【題目】橢圓上一點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為B,F(xiàn)為橢圓的右焦點(diǎn),AF⊥BF,∠ABF=,,則橢圓的離心率的取值范圍為_______

【答案】

【解析】

設(shè)左焦點(diǎn)為F′,根據(jù)橢圓定義:|AF|+|AF′|=2a,根據(jù)BA關(guān)于原點(diǎn)對稱可知|BF|=|AF′|,推知|AF|+|BF|=2a,又根據(jù)ORt△ABF的斜邊中點(diǎn)可知|AB|=2c,在Rt△ABF中用ac分別表示出|AF|和|BF|代入|AF|+|BF|=2a中即可表示出即離心率e,進(jìn)而根據(jù)α的范圍確定e的范圍.

∵BA關(guān)于原點(diǎn)對稱,∴B也在橢圓上,設(shè)左焦點(diǎn)為F′

根據(jù)橢圓定義:|AF|+|AF′|=2a

又∵|BF|=|AF′|∴|AF|+|BF|=2a …①

ORt△ABF的斜邊中點(diǎn),∴|AB|=2c

又|AF|=2csinα …②

|BF|=2ccosα …③

②③代入①2csinα+2ccosα=2a

=

e==

∵a∈[,],∴≤α+

≤sin(α+)≤1 ∴≤e≤

故答案為:[,]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;

)若,使)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將各位數(shù)字和為8的全體正整數(shù)按自小到大的順序排成一個(gè)數(shù)列,稱為P數(shù)列.2015為其中第________項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn).

(1)求橢圓C的標(biāo)準(zhǔn)方程;

2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過點(diǎn)P軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以OD為直徑的圓與點(diǎn)M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個(gè)銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐底面,底面為等腰梯形,,,點(diǎn)E邊上的點(diǎn),.

1)求證:平面;

2)若,求點(diǎn)E到平面的距離 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把編號為1,2,3,4的四個(gè)大小、形狀相同的小球,隨機(jī)放入編號為1,2,3,4的四個(gè)盒子里.每個(gè)盒子里放入一個(gè)小球.

1)求恰有兩個(gè)球的編號與盒子的編號相同的概率;

2)設(shè)小球的編號與盒子編號相同的情況有種,求隨機(jī)變量的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子中裝有大小相同的小球個(gè),在小球上分別標(biāo)有12,3…的號碼,已知從盒子中隨機(jī)取出兩個(gè)球,兩球號碼的最大值為的概率為

(Ⅰ)盒子中裝有幾個(gè)小球?

(Ⅱ)現(xiàn)從盒子中隨機(jī)地取出4個(gè)球,記所取4個(gè)球的號碼中,連續(xù)自然數(shù)的個(gè)數(shù)的最大值為隨機(jī)變量(如取標(biāo)號分別為24,6,8的小球時(shí);取標(biāo)號分別為1,24,6的小球時(shí);取標(biāo)號分別為1,2,35的小球時(shí)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若都是從集合中任取的一個(gè)數(shù),求函數(shù)有零點(diǎn)的概率;

2)若都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.

查看答案和解析>>

同步練習(xí)冊答案