過三棱柱任意兩個頂點的直線共15條,其中異面直線有( )
A.18對
B.24對
C.30對
D.36對
【答案】分析:直接解答,看下底面上的一條邊的異面直線的條數(shù),類推到上底面的邊;再求側(cè)面上的異面直線的對數(shù);即可.
解答:解:三棱柱的底面三角形的一條邊與側(cè)面之間的線段有3條異面直線,這樣3條底邊一共有9對,上下底面共有18對.
上下兩個底邊三角形就有6對;側(cè)面之間的一條側(cè)棱有6對,側(cè)面面對角線之間有6對.加在一起就是36對.
(其中棱對應的兩條是體對角線和對面的面與其不平行的另一條對角線).
故選D.
點評:本題考查棱柱的結(jié)構(gòu)特征,異面直線的判斷,排列組合的實際應用,是難題.