【題目】已知函數(shù)的定義域,部分對(duì)應(yīng)值如表, 的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于函數(shù)的命題;

函數(shù)的值域?yàn)?/span>

函數(shù)上是減函數(shù);

如果當(dāng)時(shí), 最大值是,那么的最大值為

當(dāng)時(shí),函數(shù)最多有4個(gè)零點(diǎn).

其中正確命題的序號(hào)是_________.

【答案】①②④

【解析】試題分析:因?yàn)?/span>的導(dǎo)函數(shù)的圖象如圖所示,觀察函數(shù)圖象可知,在區(qū)間內(nèi), ,所以函數(shù)上單調(diào)遞增,在區(qū)間內(nèi), ,所以函數(shù)上單調(diào)遞減,所以①②是正確的;兩個(gè)極大值點(diǎn),結(jié)合圖象可知:函數(shù)在定義域,在處極大值,在處極大值,在處極大值,又因?yàn)?/span>,所以的最大值是,最小值為, 當(dāng)時(shí), 的最大值是,那么,所以錯(cuò)誤;求函數(shù)的零點(diǎn),可得因?yàn)椴恢钚≈档闹,結(jié)合圖象可知,當(dāng)時(shí),函數(shù)最多有4個(gè)零點(diǎn),所以正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線:x=6,圓軸相交于點(diǎn)(如圖),點(diǎn)P(-1,2)是圓內(nèi)一點(diǎn),點(diǎn)為圓上任一點(diǎn)(異于點(diǎn)),直線相交于點(diǎn)

(1)若過(guò)點(diǎn)P的直線與圓相交所得弦長(zhǎng)等于,求直線的方程

(2)設(shè)直線的斜率分別為,求證 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地參加2015 年夏令營(yíng)的名學(xué)生的身體健康情況,將學(xué)生編號(hào)為,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為的樣本,且抽到的最小號(hào)碼為,已知這名學(xué)生分住在三個(gè)營(yíng)區(qū),從在第一營(yíng)區(qū),從在第二營(yíng)區(qū),從在第三營(yíng)區(qū),則第一、第二、第三營(yíng)區(qū)被抽中的人數(shù)分別為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,,其前項(xiàng)和滿足,其中

(1)設(shè)證明數(shù)列是等數(shù)列;

(2)設(shè),為數(shù)列的前項(xiàng)和,求證;

(3)設(shè)為非零整數(shù),),試確定的值,使得對(duì)任意,都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,的中點(diǎn).

求證:;

求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角所對(duì)的邊分別為,且.

(1)求

(2)若,的面積為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與橢圓相交于兩點(diǎn).

(1)若橢圓的離心率為,焦距為,求線段的長(zhǎng);

(2)若向量與向量互相垂直其中為坐標(biāo)原點(diǎn),當(dāng)橢圓的離心率時(shí),求橢圓長(zhǎng)軸長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),若時(shí),恒有, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為直角梯形,平面 的中點(diǎn),

1求證:平面

2設(shè),求點(diǎn)到平面 的距離

查看答案和解析>>

同步練習(xí)冊(cè)答案