13.已知正四棱錐的底面邊長為4cm,高與側(cè)棱夾角為45°,則其斜高長為$2\sqrt{3}$(cm).

分析 畫出圖來,根據(jù)斜高與高及底面底面邊長的一半構(gòu)成直角三角形求解.

解答 解:如圖所示:∠SBO=45°,OE=2cm,SO=OB=2$\sqrt{2}$,
∴斜高為SE=$\sqrt{4+8}$-$2\sqrt{3}$,
故答案為$2\sqrt{3}$.

點(diǎn)評 本題主要考查棱錐的結(jié)構(gòu)特征,主要涉及了棱錐基本量之間的關(guān)系.屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sinx•cosx-$\sqrt{3}{cos^2}$x.
(1)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長到原來的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,若方程g(x)+$\frac{{\sqrt{3}+m}}{2}$=0在x∈[0,π]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋物線y2=8x的焦點(diǎn)為F,設(shè)A(x1,y1),B(x2,y2)是拋物線上的兩個動點(diǎn),若x1+x2+4=$\frac{{2\sqrt{3}}}{3}|{AB}$|,
則∠AFB的最大值為(  )
A.$\frac{π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且當(dāng)x∈[1,2]時,f(x)=lnx-x+1,若函數(shù)g(x)=f(x)+mx有7個零點(diǎn),則實數(shù)m的取值范圍為( 。
A.$(\frac{1-ln2}{8},\frac{1-ln2}{6})∪(\frac{ln2-1}{6},\frac{ln2-1}{8})$B.$(\frac{ln2-1}{6},\frac{ln2-1}{8})$
C.$(\frac{1-ln2}{8},\frac{1-ln2}{6})$D.$(\frac{1-ln2}{8},\frac{ln2-1}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若命題¬(p∨q)為真命題,則下列說法正確的是(  )
A.p為真命題,q為真命題B.p為真命題,q為假命題
C.p為假命題,q為真命題D.p為假命題,q為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)上是減函數(shù)的為(  )
A.y=log${\;}_{\frac{1}{2}}$|x|B.y=x${\;}^{\frac{1}{2}}$C.y=$\frac{{{2^x}+{2^{-x}}}}{2}$D.y=lg$\frac{2-x}{2+x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在研究函數(shù) f ( x )=$\sqrt{{x^2}+4}$-$\sqrt{{x^2}-12x+40}$的性質(zhì)時,某同學(xué)受兩點(diǎn)間距離公式啟發(fā),將f(x)變形為f(x)=$\sqrt{(x-0{)^2}+(0-2{)^2}}$-$\sqrt{(x-6{)^2}+(0-2{)^2}}$,并給出關(guān)于函數(shù)f(x)以下五個描述:
①函數(shù) f(x)的圖象是中心對稱圖形; 
②函數(shù) f(x)的圖象是軸對稱圖形;
③函數(shù) f(x)在[0,6]上是增函數(shù);
④函數(shù) f(x)沒有最大值也沒有最小值;
⑤無論m為何實數(shù),關(guān)于x的方程 f(x)-m=0都有實數(shù)根.
其中描述正確的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知三個數(shù)a=0.60.3,b=log0.63,c=lnπ,則a,b,c的大小關(guān)系是( 。
A.c<b<aB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年浙江普通高校招生學(xué)業(yè)水平考試數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè),為橢圓的左、右焦點(diǎn),動點(diǎn)的坐標(biāo)為,過點(diǎn)的直線與橢圓交于,兩點(diǎn).

(3)求,的坐標(biāo);

(4)若直線,,的斜率之和為0,求的所有整數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案