設(shè)
a
b
,
c
,是兩兩不共線的平面向量,則下列結(jié)論中錯(cuò)誤的是( 。
A、
a
+
b
=
b
+
a
B、
a
b
=
b
a
C、
a
+(
b
+
c
)=(
a
+
b
)+
c
D、
a
b
c
)=(
a
b
c
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:根據(jù)平面向量數(shù)量的運(yùn)算性質(zhì)進(jìn)行判斷即可.
解答: 解:向量滿足加法,乘法的交換律,滿足加法的結(jié)合律,不滿足乘法的結(jié)合律,
故A,B,C正確,D錯(cuò)誤,
故選:D.
點(diǎn)評(píng):本題考查了平面向量的運(yùn)算律,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=4x2關(guān)于直線x-y=0對(duì)稱的拋物線的準(zhǔn)線方程是( 。
A、y=-
1
16
B、y=
1
16
C、x=
1
16
D、x=-
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是三個(gè)內(nèi)角A、B、C的對(duì)邊,a=3,cos
A+C
2
=
2
3
.且△ABC的面積為2
14

(Ⅰ)求cosB的值;
(Ⅱ)求b、c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年3月8日凌晨2點(diǎn)40分,馬來西亞航空公司由吉隆坡飛往北京的航班號(hào)為MH370的波音777-200飛機(jī)與管制中心突然失去聯(lián)系.我國政府迅速派出9艘艦船(包括4艘軍艦)在失聯(lián)區(qū)域進(jìn)行搜救,若將這9艘艦船平均分成3組執(zhí)行搜救任務(wù),每組至少有1艘軍艦,則不同的分組方法的種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓C上,且PF1⊥PF2,|PF1|=
4
3
,|PF2|=
14
3

 (1)求橢圓的方程    
(2)若直線L過圓 x2+y2+4x-2y=0的圓心M,交橢圓C于A,B兩點(diǎn),且A,B關(guān)于點(diǎn)M對(duì)稱,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,若Sn+1,Sn,Sn+1成等差數(shù)列,則q為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m>0,則函數(shù)y=2m+
8
m
的最
 
值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(1)=3,且f(x)的導(dǎo)數(shù)f′(x)<2x+1,則不等式f(2x)<4x2+2x+1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是遞增的等差數(shù)列,a1,a2是方程x2-3x+2=0的兩根.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
1
anan+1
}
的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案