數(shù)列1,4,7,…3n+1的所有項的和為
 
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:觀察數(shù)列1,4,7,…3n+1,得出該數(shù)列是等差數(shù)列,求出它的所有項的和Sn即可.
解答: 解:考查數(shù)列1,4,7,…3n+1,
知該數(shù)列是首項為1,公差為3的等差數(shù)列,且通項公式為an=3n+1;
∴該數(shù)列的所有項的和為
Sn=
n(1+3n+1)
2
=
3
2
n2+n.
故答案為:
3
2
n2+n.
點評:本題考查了等差數(shù)列的定義以及前n項和的應(yīng)用問題,解題時應(yīng)判定數(shù)列是等差數(shù)列,再應(yīng)用等差數(shù)列的公式解答問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD、BCFE、CDGF都是邊長為1的正方形,M為棱AE上任意一點.
(Ⅰ)若M為AE的中點,求證:AE⊥面MBC;
(Ⅱ)若M不為AE的中點,設(shè)二面角B-MC-A的大小為α,直線BE與平面BMC所成的角為β,求|
sin(β-
π
4
)
cosα
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果a<0,-1<b<0,則ab2,a,ab的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0,x+y=4,則μ=
1
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高三年級有8名語文教師,其中2男6女,每位老師代兩個班.現(xiàn)從中任選1男2女擔(dān)任辯論賽決賽評委,規(guī)定本班任課教師不能擔(dān)任本班比賽時的評委.已知進入八強的班級任課教師均為女性,則選取決賽評委的辦法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在任意兩個正整數(shù)間,定義某種運算(用⊕表示運算符號),當(dāng)m、n都是正偶數(shù)或都是正奇數(shù)時,m⊕n=m+n,當(dāng)m、n中其中一個為正偶數(shù),另一個是正奇數(shù)時,m⊕n=m•n,則在上述定義中集合M={(a,b)|a⊕b=12,a,b∈N*}的元素的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
3x+8y+15≥0
5x+3y-6≤0
2x-5y+10≥0
,則z=x-y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x2
a2
+
y2
b2
=1(a>b>0),M,N是橢圓的左、右頂點,P是橢圓上任意一點,且直線PM、PN的斜率分別為k1,k2(k1,k2≠0),若|k1|+|k2|的最小值為1,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,b>0,則不等式-b<
1
x
<a的解集為( 。
A、{x|-
1
a
<x<0或0<x<
1
b
}
B、{x|-
1
b
<x<0或0<x<
1
a
}
C、{x|x<-
1
a
或x>
1
b
}
D、{x|x<-
1
b
或x>
1
a
}

查看答案和解析>>

同步練習(xí)冊答案