(1)當(dāng)a≥0時(shí),f(x)是否存在最小值?若存在,請(qǐng)求出相應(yīng)x的值;若不存在,請(qǐng)說(shuō)明理由.
(2)當(dāng)x∈[-2,]時(shí),若f(x)的圖象上存在兩點(diǎn)M,N,使得直線(xiàn)MN⊥y軸,求實(shí)數(shù)a的取值范圍.
解析:(1)∵f′(x)=(x2+2x-2ax-2a)ex,令f′(x)=0,即x2+2(1-a)x-2a=0,
解得x1=a-1,x2=a-1+.
∵a≥0,∴x1<-1,x2≥0.
當(dāng)x<x1或x>x2時(shí),f′(x)>0;當(dāng)x1<x<x2時(shí),f′(x)<0,
∴f(x)在(-∞,x1)和(x2,+∞)上單調(diào)遞增,在(x1,x2)上單調(diào)遞減.
∴f(x)在x1處取極大值,在x2處取得極小值.
又∵當(dāng)x=0時(shí),f(x)=0;
當(dāng)x<0時(shí),f(x)=x(x-2a)ex>0,
∴x∈(-∞,a-1-)時(shí),f(x)∈(0,f(a-1-)).
x∈(a-1-,a-1+)時(shí),
f(x)∈(f(a-1-),f(a-1+));
x∈(a-1+,+∞)時(shí),f(x)∈(f(a-1+),+∞),
又f(a-1+)=(2-2)ea-1+≤0,
∴x=a-1+時(shí),f(x)取得最小值.
(2)∵x∈[-2,]時(shí)f(x)的圖象上存在兩點(diǎn)M,N,使得直線(xiàn)MN⊥y軸,則x∈[-2,]時(shí)f(x)不是單調(diào)增函數(shù),也不是單調(diào)減函數(shù),
∴f′(x)=(x2+2x-2ax-2a)ex在x∈[-2,]上有正有負(fù).
∴g(x)=x2+2x-2ax-2a在x∈[-2,]上有正有負(fù).
而g(-1)=1-2+2a-2a=-1<0,
∴g(x)=x2+2x-2ax-2a在x∈[-2,]上有正有負(fù)的充要條件為
g(-2)g()<0或或
由g(-2)g()<0,解得a>0或a<;
由或解得a不存在.
綜上,a的取值范圍是a>0或a<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
1 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2x-2-x | 2x+2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x-1 | x+a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com