13.一個(gè)棱長(zhǎng)為2的正方體被一個(gè)平面截去一部分后,剩余幾何體的三視圖如圖所示,則此幾何體的體積為( 。
A.$\frac{22}{3}$B.$\frac{20}{3}$C.6D.4

分析 由已知中的三視圖可得:該幾何體是一個(gè)棱長(zhǎng)為2的正方體截去一個(gè)三棱錐得到的組合體,分別計(jì)算體積,相減可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個(gè)棱長(zhǎng)為2的正方體截去一個(gè)三棱錐得到的組合體,
正方體的體積為:8,
截去的三棱錐的體積為:$\frac{1}{3}$×$\frac{1}{2}$×2×2×1=$\frac{2}{3}$,
故組合體的體積V=8-$\frac{2}{3}$=$\frac{22}{3}$,
故答案為:$\frac{22}{3}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱的體積,棱錐的體積,數(shù)形結(jié)合思想,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.把正奇數(shù)從小到大按以下方式分鐘:(1),(3,5),(7,9,11),(13,15,17,19),…,其中第n組有n個(gè)正奇數(shù),若第m組第k個(gè)正奇數(shù)是 2015,則m+k=( 。
A.63B.64C.65D.66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx.
(Ⅰ)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)g(x)=f(x)+x2-3x的單調(diào)區(qū)間及極值;
(Ⅲ)對(duì)?x≥1,f(x)≤m(x2-1)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=|x+1|+|x-2|.
(1)若函數(shù)$g(x)=\sqrt{|{x+1}|+|{x-2}|-a}$的定義域?yàn)镽,試求a的取值范圍;
(2)若f(x)=$\frac{{2{a^2}+4}}{{\sqrt{{a^2}+1}}}$成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,曲線Γ在頂點(diǎn)為O的角α的內(nèi)部,A、B是曲線Γ上任意相異兩點(diǎn),且α≥∠AOB,我們把滿足條件的最小角叫做曲線Γ相對(duì)于點(diǎn)O的“確界角”.已知O為坐標(biāo)原點(diǎn),曲線C的方程為y=$\left\{\begin{array}{l}{\sqrt{4+\frac{{x}^{2}}{3}}(x≤0)}\\{2{x}^{2}-3x+2(x>0)}\end{array}\right.$,那么它相對(duì)于點(diǎn)O的“確界角”等于(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知高與底面半徑相等的圓錐的體積為$\frac{8π}{3}$,其側(cè)面積與球O的表面積相等,則球O的表面積為4$\sqrt{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某大學(xué)為了在2016年全國大學(xué)生成語聽寫大賽取得優(yōu)秀成績(jī),抽調(diào)男女各20名學(xué)生組成集訓(xùn)隊(duì)進(jìn)行成語聽寫集訓(xùn),集訓(xùn)結(jié)束時(shí),為了檢驗(yàn)集訓(xùn)效果,對(duì)所有集訓(xùn)隊(duì)員進(jìn)行成語聽寫考核,試題為聽寫100個(gè)常用成語(每個(gè)1分,滿分100分),考核成績(jī)?nèi)鐖D莖葉圖所示:
(I)若大于或等于80分為優(yōu)秀隊(duì)員,80分以下為非優(yōu)秀隊(duì)員,根據(jù)莖葉圖填寫下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為隊(duì)員的優(yōu)秀與性別有關(guān)?
非優(yōu)秀優(yōu)秀總數(shù)
20
20
總數(shù)40
(Ⅱ)若從考核成績(jī)95分以上(包括95分)的隊(duì)員中任選兩人代表這所大學(xué)參加全國大學(xué)生成語聽寫大賽,求至少有一名男隊(duì)員參加的概率.
下面的臨界值表供參考:
P(K2≥k0) 0.150.100.050.0250.0100.0050.001
 k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)p:?x0∈R,mx02+1≤0,q:x∈R,x2+mx+1>0,若p∨q為真命題,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,2)B.(2,+∞)C.(-2,2)D.(-∞,2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體三視圖如圖所示,則該幾何體的最短的棱長(zhǎng)度是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案