12.關(guān)于不同的直線m,n與不同的平面α,β,有下列四個(gè)命題:
①m⊥α,n⊥β且α⊥β,則m⊥n;②m∥α,n∥β且α∥β,則m∥n;
③m⊥α,n∥β且α∥β,則m⊥n;   ④m∥α,n⊥β且α⊥β,則m∥n.
其中正確的命題的序號(hào)是( 。
A.①②B.②③C.①③D.②④

分析 ①,m⊥n可按相交垂直分析,又m⊥α,n⊥β,可知α與β所成二面角的平面角為直角;
②,m∥n,且m∥α,n∥β,α與β的位置關(guān)系可能平行,也可能相交;
③,若m⊥α,n∥β且α∥β,則m⊥n成立,從而進(jìn)行判斷;
④,m∥α,n⊥β且α⊥β,則m與n的位置關(guān)系不定,

解答 解:對(duì)于①,根據(jù)異面直線所成角的概念,m⊥n可按相交垂直分析,又m⊥α,n⊥β,可知α與β所成二面角的平面角為直角,故正確;
對(duì)于②,m∥n,且m∥α,n∥β,α與β的位置關(guān)系可能平行,也可能相交.故錯(cuò);
對(duì)于③,若m⊥α,n∥β且α∥β,則m⊥n,故③正確;
對(duì)于④,m∥α,n⊥β且α⊥β,則m與n的位置關(guān)系不定,故④錯(cuò).
故選:C.

點(diǎn)評(píng) 題考查了空間的線面位置關(guān)系,解決此類問題,注意定理中的關(guān)鍵條件以及特殊情況,主要根據(jù)垂直和平行定理進(jìn)行判斷,考查了空間想象能力

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)y=lnx-mx(m∈R)
(1)若函數(shù)y=f(x)過點(diǎn)P(1,-1),求曲線y=f(x)在點(diǎn)P處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若$\left\{\begin{array}{l}{x+4y-8≤0}\\{x≥0}\\{y>0}\end{array}\right.$在區(qū)域內(nèi)任取一點(diǎn)P,則點(diǎn)P落在圓x2+y2=2內(nèi)的概率為$\frac{π}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若x,y滿足約束條件$\left\{\begin{array}{l}x+y-5≤0\\ 2x-y-1≥0\\ x-2y+1≤0\end{array}\right.$,則z=x+y的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=t+3}\\{y=3-t}\end{array}}\right.$(參數(shù)t∈R),圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}}\right.$(參數(shù)θ∈[0,2π])
(1)將直線l和圓C的參數(shù)方程化為普通方程;
(2)求圓心到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}kx-k(x≥0)\\{x^2}+2ax-{({a-2})^2}(x<0)\end{array}\right.$,其中a∈R,若對(duì)任意的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,則k的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l:y=k(x-1)交x軸于點(diǎn)A,交y軸于點(diǎn)B,交直線y=x于點(diǎn)C,
(1)若k=3,求$\frac{{|{BC}|}}{{|{AC}|}}$的值;
(2)若|BC|=2|AC|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在正方體ABC的-A1B1C1D1中,點(diǎn)P是線段A1C1上的動(dòng)點(diǎn),則三棱錐P-BCD的俯視圖與正視圖面積之比的最大值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若以直角坐標(biāo)系xOy的O為極點(diǎn),Ox為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程是ρsin2θ=6cosθ.
(1)將曲線C的極坐標(biāo)方程ρsin2θ=6cosθ化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(2)若直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),當(dāng)直線l與曲線C相交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案