5.Rt△ABC中,斜邊BC為6,以BC的中點O為圓心,作半徑為2的圓,分別交BC于P、Q兩點,則|AP|2+|AQ|2+|PQ|2=42.

分析 利用余弦定理,求出|AP|2、|AQ|2,結(jié)合∠AOP+∠AOQ=180°,即可求|AP|2+|AQ|2+|PQ|2的值.

解答 解:由題意,OA=OB=3,OP=OQ=2,
△AOP中,根據(jù)余弦定理AP2=OA2+OP2-2OA•OPcos∠AOP
同理△AOQ中,AQ2=OA2+OQ2-2OA•OQcos∠AOQ
因為∠AOP+∠AOQ=180°,
所以|AP|2+|AQ|2+|PQ|2=2OA2+2OP2+PQ2=2×32+2×22+42=42.
故答案為42.

點評 本題考查直線與圓的位置關(guān)系的應(yīng)用,是中檔題,解題時要認(rèn)真審題,注意余弦定理的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)是定義在R上的周期為2的函數(shù),當(dāng)x∈[-1,1)時,f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+\frac{10}{9},-1≤x≤0}\\{lo{g}_{3}x,0<x<1}\end{array}\right.$,
則f(f($\frac{3}{2}$))=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖所示,觀察圖形,回答下列問題:
(1)[80,90)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).
(3)估計這次環(huán)保知識競賽成績的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在同一直角坐標(biāo)系中,方程$\frac{x^2}{9}+\frac{y^2}{4}=1$所對應(yīng)的圖形經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$后的圖形所對應(yīng)的方程為(  )
A.$\frac{x^2}{81}+\frac{y^2}{16}=1$B.x2+y2=1C.$\frac{x^2}{27}+\frac{y^2}{8}=1$D.$\frac{x^2}{3}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.當(dāng)x<0時,函數(shù)$y={(\frac{1}{3})^x}+5$的值域是( 。
A.(0,5)B.(-∞,5)C.(6,+∞)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知m,n是空間中兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是( 。
A.若m⊥n,n⊥α,則m∥αB.若α⊥β,m∥α,則m⊥β
C.若m∥α,n∥β,m∥n,則α∥βD.若m⊥β,m∥α,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y=-2{sin^2}x-2\sqrt{3}sinxcosx$的最小正周期和最大值分別( 。
A.$T=2π,{y_{max}}=2\sqrt{3}$B.$T=π,{y_{max}}=2\sqrt{3}$C.T=π,ymax=3D.T=π,ymax=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出下列例題:
①若奇函數(shù)f(x)對定義域內(nèi)任意x都有f(x)=f(2-x),則函數(shù)f(x)為周期函數(shù);
②函數(shù)f(x)=(x-3)e-x的單調(diào)遞增區(qū)間為(2,+∞);
③若函數(shù)f(x)=f'($\frac{π}{4}$)cosx+sinx,則f($\frac{π}{4}$)的值為1;
④函數(shù)f(x)=2|x||log0.5x|-1的零點的個數(shù)為2,
其中真命題是①③④(將你認(rèn)為真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=e3x-1,則f″($\frac{1}{3}$)=9.

查看答案和解析>>

同步練習(xí)冊答案