【題目】為普及學(xué)生安全逃生知識與安全防護(hù)能力,某學(xué)校高一年級舉辦了安全知識與安全逃生能力競賽,該競賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.

分?jǐn)?shù)(分?jǐn)?shù)段)

頻數(shù)(人數(shù))

頻率

合計(jì)

(1)求表中,,,,的值;

(2)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽.已知高一(2)班有甲、乙兩名同學(xué)取得決賽資格,記高一(2)班在決賽中進(jìn)入前三名的人數(shù)為,求的分布列和數(shù)學(xué)期望.

【答案】(1)見解析;(2)1

【解析】

(1)由題意知,參賽選手共有50人,由此能求出表中的x,y,x,s,p的值.

(2)由題意隨機(jī)變量X的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量X的分布列和隨機(jī)變量X的數(shù)學(xué)期望.

(1)由題意知,參賽選手共有(人),

所以,,.

(2)由(1)知,參加決賽的選手共人,隨機(jī)變量的可能取值為,,

,

,

,

隨機(jī)變量的分布列為:

因?yàn)?/span>,

所以隨機(jī)變量的數(shù)學(xué)期望為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某機(jī)械廠要將長,寬的長方形鐵皮進(jìn)行裁剪.已知點(diǎn)的中點(diǎn),點(diǎn)在邊上,裁剪時(shí)先將四邊形沿直線翻折到處(點(diǎn),分別落在直線下方點(diǎn),處,交邊于點(diǎn),再沿直線裁剪.

1)當(dāng)時(shí),試判斷四邊形的形狀,并求其面積;

2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.

(1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)正方體的棱長擴(kuò)大到原來的n倍,則其表面積擴(kuò)大到原來的______倍,體積擴(kuò)大到原來的______倍;

2)球的半徑擴(kuò)大到原來的n倍,則其表面積擴(kuò)大到原來的_____倍,體積擴(kuò)大到原來的_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面平面,底面為矩形,,,、分別為線段上一點(diǎn),且.

(1)證明:;

(2)證明:平面,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù),函數(shù).

(1)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若函數(shù)與函數(shù)的圖象分別位于直線的兩側(cè),求的取值集合;

(3)對于,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊(duì)對籃球運(yùn)動員的籃球技能進(jìn)行統(tǒng)計(jì)研究,針對籃球運(yùn)動員在投籃命中時(shí),運(yùn)動員在籃筐中心的水平距離這項(xiàng)指標(biāo),對某運(yùn)動員進(jìn)行了若干場次的統(tǒng)計(jì),依據(jù)統(tǒng)計(jì)結(jié)果繪制如下頻率分

布直方圖:

(1)依據(jù)頻率分布直方圖估算該運(yùn)動員投籃命中時(shí),他到籃筐中心的水平距離的中位數(shù);

(2)若從該運(yùn)動員投籃命中時(shí),他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運(yùn)動員投籃命中時(shí),他到籃筐中心的水平距離越遠(yuǎn)越好),并從抽到的這7次成績中隨機(jī)抽取2次.規(guī)定:這2次成績均來自到籃筐中心的水平距離為4到5米的這一組,記 1分,否則記0分.求該運(yùn)動員得1分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸.已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,射線與曲線分別交異于極點(diǎn)的四點(diǎn).

(1)若曲線關(guān)于曲線對稱,求的值,并把曲線化成直角坐標(biāo)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組為了研究晝夜溫差對一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下資料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

溫差

9

10

11

8

12

發(fā)芽數(shù)(顆)

38

30

24

41

17

利用散點(diǎn)圖,可知線性相關(guān)。

(1)求出關(guān)于的線性回歸方程,若4月6日星夜溫差,請根據(jù)你求得的線性同歸方程預(yù)測4月6日這一天實(shí)驗(yàn)室每100顆種子中發(fā)芽顆數(shù);

(2)若從4月1日 4月5日的五組實(shí)驗(yàn)數(shù)據(jù)中選取2組數(shù)據(jù),求這兩組恰好是不相鄰兩天數(shù)據(jù)的概率.

(公式:

查看答案和解析>>

同步練習(xí)冊答案