在棱長為的正方體ABCD-A1B1C1D1中

(1)求證:∥平面C1BD
(2)求證:A1C平面C1BD

(1)證明略
(2)證明略
證明:(1)-------------------------------------2分
-----------------------------------------------------1分
------------------------------------------------------1分
∥面------------------------------------------------------1分
(2)



----------------------------------2分
連接,同理可證---------------2分


----------------------------------------------1分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)
在三棱錐中,△ABC是邊長為4的正三角形,平面,,M、N分別為AB、SB的中點。

(1)證明:
(2)求二面角N-CM-B的大;
(3)求點B到平面CMN的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分14分)
在三棱錐中,是邊長為的正三角形,平面⊥平面,,、分別為、的中點。
(1)證明:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)  
如圖,直三棱柱的底面位于平行四邊形中,,,,點中點.    
  
(1)求證:平面平面.
(2)設二面角的大小為,直線與平面所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P—ABCD的底面ABCD是邊長為1的菱形,∠BCD﹦60°,E是CD中點,
PA⊥底面ABCD,PA=    
             
(1)證明:平面PBE⊥平面PAB
(2)求二面角A—BE—P的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(本題滿分14分).如圖,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,
EF∥AC, EF=, CE=1
(1)求證:AF∥面BDE
(2)求CF與面DCE所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體中,,分別為 棱上的點. 已知下列判斷:

平面;②在側(cè)面上 的正投影是面積為定值的三角形;③在平面內(nèi)總存在與平面平行的直線;④平 面與平面所成的二面角(銳角)的大小與點的位置有關,與點的位置無關.
其中正確判斷的個數(shù)有
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,在直角梯形ABCD中,AB//CD,E為CD上一點,且DE=4,過E作EF//AD交BC于F現(xiàn)將沿EF折到使,如圖2。

(I)求證:PE⊥平面ADP;
(II)求異面直線BD與PF所成角的余弦值;
(III)在線段PF上是否存在一點M,使DM與平在ADP所成的角為?若存在,確定點M的位置;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的一段圖象如圖所示,則它的一個周期T、初相依次為(  )
A.,B.,
C.,D.,

查看答案和解析>>

同步練習冊答案