16.下列四個命題中錯誤的是(  )
A.在一次試卷分析中,從每個考室中抽取第5號考生的成績進行統(tǒng)計,不是簡單隨機抽樣
B.對一個樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如下:
區(qū)間[17,19)[19,21)[21,23)[23,25)[25,27)[27,29)[29,31)[31,33]
頻數(shù)113318162830
估計小于29的數(shù)據(jù)大約占總體的58%
C.設(shè)產(chǎn)品產(chǎn)量與產(chǎn)品質(zhì)量之間的線性相關(guān)系數(shù)為-0.91,這說明二者存在著高度相關(guān)
D.通過隨機詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進行抽樣調(diào)查,得到如表列聯(lián)表:
總計
走天橋402060
走斑馬線203050
總計6050110
由${K^2}=\frac{{110×{{(40×30-20×20)}^2}}}{60×50×60×50}=7.8$,則有99%以上的把握認為“選擇過馬路方式與性別有關(guān)”

分析 對4個命題分別進行判斷,即可得出結(jié)論.

解答 解:對于A,系統(tǒng)抽樣的特點是從比較多比較均衡的個體中抽取一定的樣本,并且抽取的樣本具有一定的規(guī)律性,在一次試卷分析中,從每個試室中抽取第5號考生的成績進行統(tǒng)計,這是一個系統(tǒng)抽樣,故正確;
對于B,估計小于29的數(shù)據(jù)大約占總體的52%,錯誤;
對于C,∵相關(guān)系數(shù)的絕對值越大,越具有強大相關(guān)性,∴正確
對于D,由題意,K2≈7.8
∵7.8>6.635,
∴有0.01=1%的機會錯誤,
即有99%以上的把握認為“選擇過馬路的方式與性別有關(guān)”,正確.
故選B.

點評 本題考查命題的真假判斷,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列直線中與直線l:3x+2y-5=0相交的是③(填上正確的序號).
①y=-$\frac{3}{2}$x+5②3x+2y=0 ③$\frac{x}{3}$+$\frac{y}{2}$=1④$\frac{x}{2}$+$\frac{y}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.等差數(shù)列{an}的前m項和為30,前3m項和為90,則它的前2m項和為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量$\overrightarrow a=({1,0}),\overrightarrow b=({-2,1})$.
(1)若$k\overrightarrow a-\overrightarrow b$與$\overrightarrow a+3\overrightarrow b$垂直,求k的值;
(2)若$k\overrightarrow a-\overrightarrow b$與$\overrightarrow a+3\overrightarrow b$平行,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)y=ax2+bx+c,其中a,b,c∈{0,1,2},則不同的二次函數(shù)的個數(shù)共有( 。
A.256個B.18個C.16個D.10個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)={e^x}-\frac{1}{2}{x^2}-mx$有極值點,則實數(shù)m的取值范圍是( 。
A.m≥1B.m>1C.0≤m≤1D.0<m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=lnx-\frac{1}{2}a{x^2}+bx$且函數(shù)y=f(x)圖象上點(1,f(1))處的切線斜率為0.
(1)試用含有a的式子表示b,并討論f(x)的單調(diào)性;
(2)對于函數(shù)圖象上的不同兩點A(x1,y1),B(x2,y2)如果在函數(shù)圖象上存在點M(x0,y0),(x0∈(x1,x2))使得點M處的切線l∥AB,則稱AB存在“跟隨切線”.特別地,當(dāng)${x_0}=\frac{{{x_1}+{x_2}}}{2}$時,又稱AB存在“中值跟隨切線”.試問:函數(shù)f(x)上是否存在兩點A,B使得它存在“中值跟隨切線”,若存在,求出A,B的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在實數(shù)集R中定義一種運算“*”,對于任意給定的a,b∈R,a*b為唯一確定的實數(shù),且具有性質(zhì):
(1)對任意a,b∈R,a*b=b*a;
(2)對任意a∈R,a*0=a;
(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(ex)*$\frac{1}{e^x}$的性質(zhì),有如下命題:
(1)f(x)為偶函數(shù);
(2)f(x)的x=0處取極小值;
(3)f(x)的單調(diào)增區(qū)間為(-∞,0];
(4)方程f(x)=4有唯一實根.
其中正確的命題的序號是(1)(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和Sn滿足Sn+1=Sn+$\frac{n+1}{3n}$•an(n∈N*),且a1=1.
(Ⅰ)證明:數(shù)列{$\frac{{a}_{n}}{n}$}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案