設函數(shù)
f(x)=a2x2(a>0),g(x)=blnx.(1)
將函數(shù)y=f(x)圖象向右平移一個單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;(2)
關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;(3)
對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.科目:高中數(shù)學 來源:江蘇省上岡高級中學2011-2012學年高一下學期期中考試數(shù)學試題 題型:044
設函數(shù)f(x)=x2+x,當x∈[n,n+1](n∈N*)時,f(x)的所有整數(shù)值的個數(shù)為g(n).
(1)求g(n)的表達式;
(2)設bn=,Tn=b1+b2+…+bn若Tn<l(l∈Z),求l的最小值
(3)設an=(n∈N*),Sn=a1-a2+a3-a4+…+(-1)n-1an,求Sn;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設函數(shù)f(x)=-x3+x2+(a2-1)x,其中a>0.
(1)若函數(shù)y=f(x)在x=-1處取得極值,求a的值;
(2)已知函數(shù)f(x)有3個不同的零點,分別為0、x1、x2,且x1<x2,若對任意的x∈[x1,x2],f(x)>f(1)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆福建晉江季延中學高二上學期期中考試文數(shù)學試卷(解析版) 題型:解答題
設函數(shù)f(x)=x|x-a|+b,求證:f(x)為奇函數(shù)的充要條件是a2+b2=0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)設函數(shù)f (x)=x3+ax2-(2a+3)x+ a2 , a∈R.
(Ⅰ) 若x=1是f (x)的極大值點,求實數(shù)a的取值范圍;
(Ⅱ) 設函數(shù)g(x)=bx2-(2b+1)x+ln x (b≠0,b∈R),若函數(shù)f (x)有極大值,且g(x)的極大值點與f (x)的極大值點相同.當時,求證:g(x)的極小值小于-1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com