5.如圖,平面上有四個(gè)點(diǎn)A、B、P、Q,其中A、B為定點(diǎn),且AB=$\sqrt{3}$,P、Q為動(dòng)點(diǎn),滿足AP=PQ=QB=1,又△APB和△PQB的面積分別為S和T,則S2+T2的最大值為( 。
A.$\frac{6}{7}$B.1C.$\sqrt{3}$D.$\frac{7}{8}$

分析 利用三角形面積公式分別表示出S與T,代入S2+T2中,利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn),將第一問確定的關(guān)系式代入,利用余弦函數(shù)的性質(zhì)及二次函數(shù)的性質(zhì)求出最大值即可.

解答 解:在△PAB中,由余弦定理得:
PB2=PA2+AB2-2PA•AB•cosA=1+3-2$\sqrt{3}$cosA=4-2$\sqrt{3}$cosA,
在△PQB中,由余弦定理得:
PB2=PQ2+QB2-2PQ•QB•cosQ=2-2cosQ,
∴4-2$\sqrt{3}$cosA=2-2cosQ,即cosQ=$\sqrt{3}$cosA-1
根據(jù)題意得:S=$\frac{1}{2}$PA•AB•sinA=$\frac{\sqrt{3}}{2}$sinA,
T=$\frac{1}{2}$PQ•QB•sinQ=$\frac{1}{2}$sinQ,
∴S2+T2=$\frac{3}{4}$sin2A+$\frac{1}{4}$sin2Q
=$\frac{3}{4}$(1-cos2A)+$\frac{1}{4}$(1-cos2Q)=-$\frac{3}{2}$(cosA-$\frac{\sqrt{3}}{6}$)2+$\frac{7}{8}$,
當(dāng)cosA=$\frac{\sqrt{3}}{6}$時(shí),S2+T2有最大值$\frac{7}{8}$,
故選D.

點(diǎn)評(píng) 此題考查了余弦定理,三角形的面積公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握余弦定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2=4ρ(cosθ+sinθ)-6.若以極點(diǎn)O為原點(diǎn),極軸所在直線為x軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓C的直角坐標(biāo)方程及其參數(shù)方程;
(Ⅱ)在直角坐標(biāo)系中,點(diǎn)P(x,y)是圓C上動(dòng)點(diǎn),求x+y的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{3}^{x-1},x≤0}\end{array}\right.$,則f(f(1))=( 。
A.$\frac{1}{3}$B.3C.1D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,既是奇函數(shù)又增函數(shù)的為( 。
A.y=x+1B.y=-x2C.y=-$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(2,m),若$\overrightarrow a$⊥$\overrightarrow b$,則|$\overrightarrow b$|=(  )
A.5B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若sin(x-$\frac{3}{4}$π)cos(x-$\frac{π}{4}$)=-$\frac{1}{4}$,則cos4x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)g(x)=x2-2x+1+mlnx,(m∈R).
(1)當(dāng)m=1時(shí),求函數(shù)y=g(x)在點(diǎn)(1,0)處的切線方程;
(2)當(dāng)m=-12時(shí),求f(x)的極小值;
(3)若函數(shù)y=g(x)在x∈($\frac{1}{4}$,+∞)上的兩個(gè)不同的數(shù)a,b(a<b)處取得極值,記{x}表示大于x的最小整數(shù),求{g(a)}-{g(b)}的值(ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F1(1,0),離心率為e.設(shè)A,B為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF1的中點(diǎn)為M,BF1的中點(diǎn)為N,原點(diǎn)O在以線段MN為直徑的圓上.若直線AB的傾斜角α∈(0,$\frac{π}{3}$),則e的取值范圍是[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在一次研究性學(xué)習(xí)中,老師給出函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=ex(x+1).甲、乙、丙、丁四位同學(xué)在研究此函數(shù)時(shí)給出下列結(jié)論:
①當(dāng)x>0時(shí),f(x)=ex(1-x);
②f(x)=0有2個(gè)不相等實(shí)根;
③f(x)>0的解集為(-1,0)∪(1,+∞);
④函數(shù)f(x)在R為減函數(shù),
其中正確結(jié)論的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案