20.畫出底面邊長為4cm,高為3cm的正四棱錐的直觀圖.(不寫作法)

分析 先畫出底面,再畫出高,即可得出結論.

解答 解:底面邊長為4cm,高為3cm的正四棱錐如圖所示,

點評 本題考查正四棱錐直觀圖,考查數(shù)形結合的數(shù)學思想,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,角A、B、C的對邊分別為a、b、c,若$\overrightarrow m=(b,c-a)$,$\overrightarrow n=(sinC+sinA,sinC-sinB)$,且$\overrightarrow m$∥$\overrightarrow n$.
(1)求角A;       
(2)若b+c=4,△ABC的面積為$\frac{{3\sqrt{3}}}{4}$,求邊a的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10=( 。
A.24B.27C.29D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在單調(diào)遞增的等比數(shù)列{an}中,${a_{{1_{\;}}}}+{a_4}=5,{a_2}•{a_3}$=6,則$\frac{a_4}{a_1}$=( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-$\frac{2}{3}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知角$α∈(\frac{π}{2},π)$,且tanα=-$\frac{{\sqrt{3}}}{3}$,則cosα的值為( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.全集U=R,函數(shù)f(x)=$\frac{1}{\sqrt{sinx-\frac{1}{2}}}$+lg(2-x2)的定義域為集合A,集合B={x|x2-a<0}.
(1)求∁UA;
(2)若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知sinθ+cosθ=$\frac{4}{3}$($\frac{π}{4}$<θ<$\frac{π}{2}$),則cosθ-sinθ的值為( 。
A.$\frac{{\sqrt{2}}}{3}$B.$-\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)$f(x)=({m^2}-3m-3){x^{\sqrt{m}}}$為冪函數(shù),則實數(shù)m的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(2x+1)的定義域為[-3,3],則函數(shù)f(x-1)的定義域為[-4,8].

查看答案和解析>>

同步練習冊答案