在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知
(1)求cosA的值;
(2)的值.
(3)若已知向量=(cos,cos),=(sin,cos).若=,求sin(-x)的值.
【答案】分析:(1)直接利用已知條件以及余弦定理,求cosA的值;
(2)利用(1)的結(jié)果,求出sinA,通過二倍角公式求出cos2A,sin2A,利用兩角和的余弦函數(shù)直接求解的值.
(3)通過向量=(cos,cos),=(sin,cos).利用=,求出的正弦函數(shù)值,利用誘導(dǎo)公式以及二倍角的余弦函數(shù)直接求解sin(-x)的值.
解答:解:(1)由可得c=b=,
所以cosA===
(2)因?yàn)閏osA=,a∈(0,π),所以sinA==,
cos2A=2cos2A-1=-,故sin2A=2sinAcosA=,
=cos2Acos-sin2Asin==,
(3)向量=(cos,cos),=(sin,cos).
=,(cos,cos)•(sin,cos)=
可得sin()=,
sin(-x)=-cos2()=2sin2)-1=
點(diǎn)評(píng):本題考查余弦定理,同角三角函數(shù)的基本關(guān)系式,二倍角公式的應(yīng)用,考查計(jì)算能力與轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)邊長(zhǎng)分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊(cè)答案