分析 (1)求出f(x)的導數(shù),由題意a>0,討論f(x)的單調區(qū)間,可得f(1)我最大值,解方程可得a的值;
(2)求出g(x)的解析式,求得g(x)的導數(shù),單調區(qū)間,可得g(x)的最大值,令最大值大于0,解不等式即可得到b的范圍;
(3)由題意可得f(x)=$\frac{x}{{e}^{x}}$<$\frac{1}{k+2x-{x}^{2}}$對任意x∈(0,2)都成立,所以k+2x-x2>0,即k>x2-2x對任意x∈(0,2)都成立,從而k≥0,可得k<$\frac{{e}^{x}}{x}$+x2-2x,令g(x)=$\frac{{e}^{x}}{x}$+x2-2x,求出單調區(qū)間,可得最小值,進而得到k的范圍.
解答 解:(1)由題意得函數(shù)f(x)=$\frac{ax}{e^x}$的導數(shù)為f′(x)=$\frac{a(1-x)}{{e}^{x}}$,
因為a>0,所以當x∈(-∞,1)時,f′(x)>0,
y=f(x)在(-∞,1)單調遞增;當x∈(1,+∞)時,f′(x)<0,
y=f(x)在(1,+∞)單調遞減;----------------------(2分)
則$f{(x)_{{m}ax}}=f(1)=\frac{a}{e}=\frac{1}{e}$,則a=1----------------------(3分)
(2)由題意知函數(shù)g(x)=lnf(x)-b=lnx-x-b,(x>0)
所以g′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,----------------------(4分)
易得函數(shù)g(x)在(0,1)單調遞增,在(1,+∞)上單調遞減,
所以g(x)max=g(1)=-1-b,
則依題意知-1-b>0,----------------------(5分)
則b<-1,所以實數(shù)b的取值范圍是(-∞,-1).----------------------(6分)
(3)由題知f(x)=$\frac{x}{{e}^{x}}$<$\frac{1}{k+2x-{x}^{2}}$對任意x∈(0,2)都成立,
所以k+2x-x2>0,即k>x2-2x對任意x∈(0,2)都成立,從而k≥0.---------(8分)
又不等式整理可得k<$\frac{{e}^{x}}{x}$+x2-2x,令g(x)=$\frac{{e}^{x}}{x}$+x2-2x,
所以g′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$+2(x-1)=(x-1)($\frac{{e}^{x}}{{x}^{2}}$+2),得x=1,
當x∈(1,2)時,g′(x)>0,函數(shù)g(x)在(1,2)上單調遞增,
同理,函數(shù)g(x)在(0,1)上單調遞減,g(x)min=g(1)=e-1,
依題意得k<g(x)min=g(1)=e-1,----------------------(11分)
綜上所述,實數(shù)k的取值范圍是[0,e-1).----------------------(12分)
點評 本題考查導數(shù)的運用:求單調區(qū)間和極值、最值,考查不等式恒成立問題解法,注意運用分離參數(shù)法,構造函數(shù)法,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b≤4 | B. | b<4 | C. | b≥4 | D. | b>4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -5 | B. | -7 | C. | -9 | D. | -11 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com