(本小題滿分15分)
數(shù)列是首項(xiàng)為23,公差為整數(shù)的等差數(shù)列,且,
求:(1)數(shù)列的公差;
(2)前項(xiàng)和的最大值;
(3)當(dāng)時,求的最大值.
(1);    (2)78 ;          (3)12 。          

試題分析:(1)由,得:,所以,
因?yàn)楣顬檎麛?shù),所以                                …………5分
(2)由(1)易知,<0, ,,
所以前6項(xiàng)和最大,最大為S6=78。                            …………10分
(3)由Sn=23n+=得:,又n∈N*
所以n的最大值為12.                                       …………15分
點(diǎn)評:本題以等差數(shù)列為載體,考查等差數(shù)列的性質(zhì)、通項(xiàng)公式以及前n項(xiàng)和公式.正確運(yùn)用等差數(shù)列通項(xiàng)及前n項(xiàng)和公式,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列的前n項(xiàng)和為,則數(shù)列的前50項(xiàng)的和為(   )
A.49B.50C.99D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下表中數(shù)陣為“森德拉姆素?cái)?shù)篩”,其特點(diǎn)是每行每列都成等差數(shù)列,記第行第列的數(shù)為,則:

(Ⅰ)      ;           (Ⅱ)表中數(shù)共出現(xiàn)      次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列{ an}的前n項(xiàng)和為Sn,且Sn=2an-l;數(shù)列{bn}滿足bn-1=bn=bnbn-1(n≥2,n∈N*)b1=1.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某企業(yè)年初有資金1000萬元,如果該企業(yè)經(jīng)過生產(chǎn)經(jīng)營,每年資金增長率為50%,但每年年底都要扣除消費(fèi)基金x萬元,余下資金投入再生產(chǎn),為實(shí)現(xiàn)經(jīng)過五年,資金達(dá)到2000萬元(扣除消費(fèi)基金后),那么每年扣除的消費(fèi)資金應(yīng)是多少萬元(精確到萬元)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列的前n項(xiàng)和是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列的前項(xiàng)和為,則等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列Sn為該數(shù)列的前n項(xiàng)和,計(jì)算得
觀察上述結(jié)果,推測出Sn(n∈N*),并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列前n項(xiàng)的和為()
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案