從
軸上一點A分別向函數(shù)
與函數(shù)
引不是水平方向的切線
和
,兩切線
、
分別與
軸相交于點B和點C,O為坐標原點,記△OAB的面積為
,△OAC的面積為
,則
+
的最小值為
.
試題分析:
,設兩切點分別為
,
,(
,
),
:
,即
,令
,得
;
令
,得
.
:
,即
,令
,得
;令
,得
.依題意,
,得
,
+
=
=
=
,
=
,可得當
時,
有最小值8.
點評:利用導數(shù)求解曲線在某點的切線方程是解決此類問題的關鍵,對于高次函數(shù)的最值問題常常利用導數(shù)法求解
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
給出定義:若函數(shù)
在D上可導,即
存在,且導函數(shù)
在D上也可導,則稱
在D上存在二階導函數(shù),記
=
,若
<0在D上恒成立,則稱
在D上為凸函數(shù),以下四個函數(shù)在
上不是凸函數(shù)的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)當
時,求曲線
在點
處的切線方程;
(2)對任意
,
在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間和極值。
(2)若關于
的方程
有三個不同實根,求實數(shù)
的取值范圍;
(3)已知當
(1,+∞)時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)求曲線
在點
處的切線方程;
(Ⅱ)直線
為曲線
的切線,且經(jīng)過原點,求直線
的方程及切點坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(I)當
時,討論函數(shù)
的單調(diào)性:
(Ⅱ)若函數(shù)
的圖像上存在不同兩點
,
,設線段
的中點為
,使得
在點
處的切線
與直線
平行或重合,則說函數(shù)
是“中值平衡函數(shù)”,切線
叫做函數(shù)
的“中值平衡切線”.
試判斷函數(shù)
是否是“中值平衡函數(shù)”?若是,判斷函數(shù)
的“中值平衡切線”的條數(shù);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
,若
在區(qū)間
上單調(diào)遞減,則
的取值范圍是C
查看答案和解析>>