7.已知拋物線Γ:y=x2及拋物線Γ上的一點(diǎn)A(2,4).
(1)求拋物線Γ在點(diǎn)A處的切線l的方程;
(2)求拋物線Γ及切線l與x軸所圍成圖形的面積.

分析 (1)求導(dǎo)數(shù),可得切線斜率,從而可得該拋物線在點(diǎn)A處的切線l的方程;
(2)利用定積分可求曲線C、直線l和x軸所圍成的圖形的面積.

解答 解:(1)k=y'|x=2=2x|x=2=4,…(2分)
切點(diǎn)A(2,4),所以切線l的方程為y-4=4(x-2)
即y=4x-4…(4分)
(2)令y=0,則x=1,所以切線與x軸的交點(diǎn)為B(1,0)…(5分)
所以$S=\int_0^1{x^2}dx+\int_1^2{({x^2}}-4x+4)dx$…(7分)
=$\left.{\frac{1}{3}{x^3}}\right|_0^1+(\left.{\frac{1}{3}{x^3}-2{x^2}+4x)}\right|_1^2$…(8分)
=$\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$…(10分)

點(diǎn)評 本題考查導(dǎo)數(shù)的幾何意義,考查了定積分在求面積中的應(yīng)用,以及定積分的計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.閱讀下列有關(guān)光線的入射與反射的兩個(gè)事實(shí)現(xiàn)象,現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角i與反射角r相等(如圖19-1);現(xiàn)象(2):光線從橢圓的一個(gè)焦點(diǎn)出發(fā)經(jīng)橢圓反射后通過另一個(gè)焦點(diǎn)(如圖19-2).試結(jié)合上述事實(shí)現(xiàn)象完成下列問題:
(1)有一橢圓型臺(tái)球桌2a,長軸長為短軸長為2b.將一放置于焦點(diǎn)處的桌球擊出,經(jīng)過球桌邊緣的反射(假設(shè)球的反射完全符合現(xiàn)象(2))后第一次返回到該焦點(diǎn)時(shí)所經(jīng)過的路程記為S,求S的值(用a,b表示);
(2)結(jié)論:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1上任一點(diǎn)P(x0,y0)處的切線l的方程為$\frac{{{x_0}x}}{a^2}$+$\frac{{{y_0}y}}{b^2}$=1.記橢圓C的方程為C:$\frac{x^2}{4}$+y2=1.
①過橢圓C的右準(zhǔn)線上任一點(diǎn)M向橢圓C引切線,切點(diǎn)分別為A,B,求證:直線lAB恒過一定點(diǎn);
②設(shè)點(diǎn)P(x0,y0)為橢圓C上位于第一象限內(nèi)的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2為橢圓C的左右焦點(diǎn),點(diǎn)I為△PF1F2的內(nèi)心,直線PI與x軸相交于點(diǎn)N,求點(diǎn)N橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知曲線Γ:y=ex和直線l:y=kx,若直線l上有且只有兩個(gè)點(diǎn)關(guān)于y軸的對稱點(diǎn)在曲線Γ上,則k的取值范圍是( 。
A.(-∞,-e)B.(-∞,-e]C.(-e,0)D.[-e,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\vec a$=(-3,2,5),$\vec b$=(1,5,-1)則 $\vec a$+$\vec b$的值為( 。
A.(2,8,4)B.(1,3,6)C.(5,8,9)D.(-2,7,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸,且拋物線上點(diǎn)P(2,m)到焦點(diǎn)的距離為3,斜率為2的直線L與拋物線相交于A,B兩點(diǎn)且|AB|=3$\sqrt{5}$,求拋物線和直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知雙曲線的焦距為26,$\frac{a^2}{c}$=$\frac{25}{13}$,則雙曲線的標(biāo)準(zhǔn)方程是$\frac{x^2}{25}-\frac{y^2}{144}$=1或$\frac{y^2}{25}-\frac{x^2}{144}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=ln(x2-x-2)的單調(diào)遞減區(qū)間為( 。
A.$(-∞,\frac{1}{2})$B.(-∞,-1)C.($\frac{1}{2}$,+∞)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx,g(x)=ax2-(a+1)x+1(a∈R).
(Ⅰ)當(dāng)a=0時(shí),求f(x)+g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x≥1時(shí),f(x)≤g(x)+lnx,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若對任意x1,x2∈(0,1],且x1≠x2,都有|$\frac{f({x}_{1})-f({x}_{2})}{\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}}$|≤4,則稱y=f(x)為“以4為界的類斜率函數(shù)”.
(Ⅰ)試判斷y=$\frac{4}{x}$是否為“以4為界的類斜率函數(shù)”;

(Ⅱ)若a<0,且函數(shù)f(x)=x-1-alnx(a∈R)為“以4為界的類斜率函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案