【題目】對(duì)應(yīng)的邊分別為,

,

(1)求角A,

(2)求證:

(3)若,且BC邊上的中線AM長為,求的面積。

【答案】(1);(2)見解析;(3).

【解析】試題分析:1)已知等式利用正弦定理化簡(jiǎn),利用兩角和與差的正弦函數(shù)公式及二倍角的正弦函數(shù)公式化簡(jiǎn),再利用誘導(dǎo)公式化簡(jiǎn)求出sinA的值,即可確定出A的度數(shù);
2)表示出所證不等式左右兩邊之差,利用余弦定理及完全平方公式性質(zhì)化簡(jiǎn),判斷差的正負(fù)即可得證;
3)由a=b,得到A=B,求出C的度數(shù),在三角形AMC中,由AM的長與cosC的值,求出AC的長,利用三角形面積公式求出三角形ABC面積即可.

試題解析:

(1), ,

.

, ,

(2)

.

(3)由及(1),知

.

中,由余弦定理

,解得.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處的切線的方程為,求實(shí)數(shù)的值;

(2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,當(dāng)時(shí),的圖象在處的切線相同.

(1)求的值;

(2)令,若存在零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司計(jì)劃投資AB兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤y1與投資金額x的函數(shù)關(guān)系為y118,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關(guān)系為y2(注:利潤與投資金額單位:萬元).

(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;

(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平行四邊形中, , 分別為的中點(diǎn).現(xiàn)把平行四邊形沿折起,如圖(2)所示,連結(jié).

1)求證:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓過坐標(biāo)原點(diǎn)且圓心在曲線上.

(1)若圓分別與軸、軸交于點(diǎn)、(不同于原點(diǎn)),求證:的面積為定值;

(2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;

(3)設(shè)直線(2)中所求圓交于點(diǎn)、, 為直線上的動(dòng)點(diǎn),直線與圓的另一個(gè)交點(diǎn)分別為,,且,在直線異側(cè),求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)談?wù)摵瘮?shù)的單調(diào)性;

(Ⅱ)若函數(shù)在區(qū)間內(nèi)任取有兩個(gè)不相等的實(shí)數(shù),,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.

當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

將函數(shù)的圖象沿軸方向向右平移個(gè)單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),

得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中中,側(cè)面為矩形, 的中點(diǎn), 交于點(diǎn),且平面

1)證明:

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案