設f(x)=xlnx,若f′(x0)=2,則x0=(  )
A、e2
B、e
C、
ln2
2
D、ln2
分析:利用乘積的運算法則求出函數(shù)的導數(shù),求出f'(x0)=2解方程即可.
解答:解:∵f(x)=xlnx
f′(x)=lnx+x•
1
x
=lnx+1

∵f′(x0)=2
∴l(xiāng)nx0+1=2
∴x0=e,
故選B.
點評:本題考查兩個函數(shù)積的導數(shù)及簡單應用.導數(shù)及應用是高考中的?純热荩J真掌握,并確保得分.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

13、設f(x)=xlnx,若f′(x0)=2,則x0=
e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=xlnx,g(x)=ax3(x∈R).
(1)求f(x)的極值;
(2)設F(x)=f(x)-g(x),討論函數(shù)F(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=xlnx+1,若f'(x0)=2,則f(x)在點(x0,y0)的切線方程為
2x-y-e+1=0
2x-y-e+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=xlnx;對任意實數(shù)t,記gt(x)=(1+t)x-et
(1)判斷f(x),gt(x)的奇偶性;
(2)(理科做)求函數(shù)y=f(x)-g2(x)的單調區(qū)間;
  (文科做)求函數(shù)y=log0.1(g2(x))的單調區(qū)間;
(3)(理科做)證明:f(x)≥gt(x)對任意實數(shù)t恒成立.

查看答案和解析>>

同步練習冊答案