Loading [MathJax]/jax/output/CommonHTML/jax.js
1.已知sinα+cosα=355,α∈(π4$$π2),求sin2α和tan2α的值.

分析 把已知條件兩邊平方,然后利用同角三角函數(shù)間的關(guān)系及二倍角的正弦函數(shù)公式化簡可得sin2α的值,根據(jù)2α的范圍利用同角三角函數(shù)間的關(guān)系求出cos2α即可得到tan2α的值;

解答 解:∵sinα+cosα=355,α∈(π4$$π2),
∴由題意得(sinα+cosα)2=95,
即1+sin2α=95,
∴sin2α=45
又2α∈(π2,π),
∴cos2α=-1sin22α=-35,
∴tan2α=sin2αcos2α=-43

點(diǎn)評 此題考查學(xué)生靈活運(yùn)用二倍角的正弦函數(shù)公式、同角三角函數(shù)間的基本關(guān)系化簡求值,是一道綜合題.做題時(shí)學(xué)生應(yīng)注意角度的范圍,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個(gè)等差數(shù)列{an}的前n項(xiàng)和為12,前2n項(xiàng)和為24,則前3n項(xiàng)和為( �。�
A.36B.48C.38D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知?jiǎng)狱c(diǎn)P(x,y)與兩定點(diǎn)M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)當(dāng)軌跡C為焦點(diǎn)在y軸上的橢圓時(shí),求λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)集合A={x|x2+x≤0,x∈R},則集合A∩Z中有2個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=ax2+bx+c,已知方程f(x)=x無實(shí)數(shù)解.
求證:f(f(x))=x也沒有實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到一些統(tǒng)計(jì)量的值.
¯x¯y¯w8i=1(xi-¯x28i=1(wi-¯w28i=1(xi-¯x)(yi-¯y8i=1(wi-¯w)(yi-¯y
46.656.36.8289.81.61469108.8
表中wi=xi,¯w=188i=1wi
(I)根據(jù)表中數(shù)據(jù),求回歸方程y=c+dx;
(II)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)( II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費(fèi)x=90時(shí),年銷售量及年利潤的預(yù)報(bào)值時(shí)多少?
(ii)當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線v=α+βu的斜率和截距的最小二乘估計(jì)分別為:
β=ni=1ui¯uvi¯vni=1ui¯u2,α=¯v¯u

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=2sin(π2+x)cosx-3(cosx-sinx)2
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將f(x)的圖象向右平移π12個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的12倍,得到函數(shù)y=g(x),求g(π4)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-x122
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x>1時(shí),f(x)<x-1
(3)若存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)>k(x-1)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角α的終邊經(jīng)過點(diǎn)(sin15°,-cos15°),則cos2α的值為(  )
A.12+34B.1234C.34D.0

查看答案和解析>>

同步練習(xí)冊答案