下列命題正確的是
 
.(寫出所有正確命題的序號)
①函數(shù)f(x)=cos2x-2
3
sinxcosx
在區(qū)間[-
π
6
,
π
3
]
上是單調(diào)遞增的;
②在△ABC中,BC=1,B=60°,當(dāng)△ABC的面積為
3
時,AB=4;
③若
a
為非零向量,且
a
b
=0,則滿足條件的向量
b
有無數(shù)個;
④已知
π
2
<α<β<π
,且sinα=
5
5
,sinβ=
10
10
,則α+β=
4
考點:命題的真假判斷與應(yīng)用
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:①化簡函數(shù)f(x),然后求出余弦型函數(shù)的增區(qū)間,從而判斷出命題①錯誤;
②把BC=1,B=60°代入三角形的面積公式求得AB的值判斷命題②;
③由向量數(shù)量積為0的條件判斷;
④利用給出的三角函數(shù)值,直接求出α+β的值判斷命題④.
解答: 解:對于①,f(x)=cos2x-2
3
sinxcosx

=cos2x-
3
sin2x
=2(
1
2
cos2x-
3
2
sin2x)

=2cos(2x+
π
3
)

-π+2kπ≤2x+
π
3
≤2kπ,k∈Z
,得
-
3
+kπ≤x≤-
π
6
+kπ,k∈Z

取k=1,得
π
3
≤x≤
6

∴函數(shù)f(x)=cos2x-2
3
sinxcosx
在區(qū)間[-
π
6
,
π
3
]
上不是單調(diào)遞增的.命題①錯誤;
對于②,由S△ABC=
1
2
•AB•BCsinB
=
1
2
•1•AB•sin60°
=
1
2
×
3
2
AB=
3
,
∴AB=4.命題②正確;
對于③,∵
a
為非零向量,則零向量及與
a
垂直的非零向量均滿足
a
b
=0,
∴命題③正確;
對于④,∵
π
2
<α<β<π
,且sinα=
5
5
,sinβ=
10
10
,
cosα=-
1-sin2α
=-
1-(
5
5
)2
=-
2
5
5
,
cosβ=-
1-sin2β
=-
1-(
10
10
)2
=-
3
10
10

∴cos(α+β)=cosαcosβ-sinαsinβ
=-
2
5
5
×(-
3
10
10
)-
5
5
×
10
10
=
2
2

又π<α+β<2π,
α+β=
4
.命題④錯誤.
∴正確的命題是②③.
故答案為:②③.
點評:本題考查命題的真假判斷與應(yīng)用,綜合考查三角函數(shù)的單調(diào)性、解三角形及已知三角函數(shù)值求角等問題,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某商品的進(jìn)貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件,今年擬下調(diào)銷售單價以提高銷量,增加收益.據(jù)測算,若今年的實際銷售單價為x元/件(1≤x≤2),今年新增的年銷量(單位:萬件)與(2-x)2成正比,比例系數(shù)為4.
(1)寫出今年商戶甲的收益y(單位:萬元)與今年的實際銷售單價x間的函數(shù)關(guān)系式;
(2)商戶甲今年采取降低單價,提高銷量的營銷策略是否能獲得比往年更大的收益(即比往年收益更多)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-
1
2p
x2
(p>0)的焦點與雙曲線C2
x2
3
-y2=1的左焦點的連線交C1于第三象限的點M.若C1在點M處的切線平行于C2的一條漸近線,則P=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①四邊形是平面圖形;
②有三個共同點的兩個平面重合;
③兩兩相交的三條直線必在同一平面內(nèi);
④三角形必是平面圖形.
其中正確的命題是
 
(填寫所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①已知函數(shù)f(x)為連續(xù)可導(dǎo)函數(shù),若f(x)為奇函數(shù),則f(x)的導(dǎo)函數(shù)f′(x)為偶函數(shù);
②若函數(shù)f(x)=x2,則f′(2x)=[f(2x)]′;
③若函數(shù)g(x)=(x-1)(x-2)…(x-5)(x-6),則g′(6)=120;
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值”的充要條件.
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中真命題為
 

①“?x0∈R,使得x02+1>3x0”的否定是“?x∈R,都有x2+1≤3x”;
②“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的必要不充分條件;
③設(shè)圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)與坐標(biāo)軸有4個交點,分別為A(x1,0),B(x2,0),C(0,y1),D(0,y2),則x1x2-y1y2=0;
④函數(shù)f(x)=sinx-x的零點個數(shù)有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c且f(1+x)=f(-x),則下列不等式中成立的是( 。
A、f(-2)<f(0)<f(2)
B、f(0)<f(-2)<f(2)
C、f(2)<f(0)<f(-2)
D、f(0)<f(2)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的直徑,弦CD交AB于點P,PA=2,PC=6,PD=4,則AB等于(  )
A、3B、8C、12D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,動點p(x,y)(x≥0)滿足:點p到定點F(
1
2
,0)與到y(tǒng)軸的距離之差為
1
2
.記動點p的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過點F的直線交曲線C于A、B兩點,過點A和原點O的直線交直線x=-
1
2
于點D,求證:直線DB平行于x軸.

查看答案和解析>>

同步練習(xí)冊答案