13.已知從集合A到集合B的映射滿足f:(x,y)→(x+y,xy),若(3,2)∈A,則B中與之對(duì)應(yīng)的元素為(5,6).

分析 根據(jù)f:(x,y)→(x+y,xy),可得A中元素(x,y)在B中的對(duì)應(yīng)元素為(x+y,xy),將x=3,y=2代入,可得A中元素(3,2)在B中的對(duì)應(yīng)元素.

解答 解:∵f:(x,y)→(x+y,xy)
∴A中元素(x,y)在B中的對(duì)應(yīng)元素為(x+y,xy),
A中元素(3,2)在B中的對(duì)應(yīng)元素為(5,6),
故答案為:(5,6).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是映射,正確理解映射中A中元素與B中元素的對(duì)應(yīng)關(guān)系法則,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且an+Sn=4,則數(shù)列{an}的公比為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.冪函數(shù)f(x)=(m2-m-1)x${\;}^{{m}^{2}+m-3}$在x∈(0,+∞)上是減函數(shù),則m=(  )
A.-1B.2C.-1或2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知tan($\frac{π}{4}$+θ)=$\frac{1}{2}$,則tanθ=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.威遠(yuǎn)中學(xué)舉行中學(xué)生“珍愛地球•保護(hù)家園”的環(huán)保知識(shí)比賽,比賽分為初賽和復(fù)賽兩部分,初賽采用選手從備選題中選一題答一題的方式進(jìn)行;每位選手最多有5次答題機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止比賽,答對(duì)3題者直接進(jìn)入復(fù)賽,答錯(cuò)3題者則被淘汰.已知選手甲答對(duì)每個(gè)題的概率均為$\frac{3}{4}$,且相互間沒有影響.
(Ⅰ)求選手甲進(jìn)入復(fù)賽的概率;
(Ⅱ)設(shè)選手甲在初賽中答題的個(gè)數(shù)為X,試求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=2ax2+(a+4)x+lnx.
(1)若f(x)在x=$\frac{1}{4}$處的切線與直線4x+y=0平行,求a的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,PD⊥AB,PD⊥BC,且PD=1,E為PC的中點(diǎn).
(1)求證:PA∥平面BDE;
(2)求直線PB與平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中錯(cuò)誤的是( 。
A.命題“若 x2-5x+6=0,則x=2”的逆否命題是“若 x≠2,則x2-5x+6≠0”
B.命題“角α的終邊在第一象限,則α是銳角”的逆命題為真命題
C.已知命題 p和 q,若p∨q 為假命題,則命題 p與q中必一真一假
D.命題“若x>y,則 x>|y|”的逆命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)F、A、B分別為E的左焦點(diǎn)、右頂點(diǎn),上頂點(diǎn),|AF|=$\sqrt{2}$+1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過原點(diǎn)O做斜率為k(k>0)的直線,交E于C,D兩點(diǎn),求四邊形ACBD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案