已知Sn是等比數(shù)列{an}的前n項(xiàng)和,若S4=10,且a5,a3,a4成單調(diào)遞增的等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2a2n(n∈N*),求數(shù)列{
bn
an
}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等比數(shù)列的通項(xiàng)公式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(II)bn=log2a2n=2n,可得
bn
an
=
2n
(-2)n
,利用“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式即可得出.
解答: 解:(I)設(shè)等比數(shù)列{an}的公比為q≠1,
∵S4=10,且a5,a3,a4成單調(diào)遞增的等差數(shù)列.
a1(1+q+q2+q3)=10,2a3=a5+a4,即2a1q2=a1q4+a1q3,化為q2+q-2=0,解得q=-2,
q=-2
a1=-2

∴a5=-32,a3=-8,a4=16,滿足成單調(diào)遞增的等差數(shù)列.
∴an=-2×(-2)n-1=(-2)n
(II)bn=log2a2n=2n,
bn
an
=
2n
(-2)n
,
∴Tn=
2
-2
+
4
(-2)2
+
6
(-2)3
+…+
2(n-1)
(-2)n-1
+
2n
(-2)n

-2Tn=2+
4
-2
+
6
(-2)2
+…+
2n
(-2)n-1
,
∴-3Tn=2+
2
-2
+
2
(-2)2
+…+
2
(-2)n-1
-
2n
(-2)n
=
1-(-
1
2
)n
1-(-
1
2
)
-
2n
(-2)n
=
4
3
[1-(-
1
2
)n]-
2n
(-2)n
,
化為T(mén)n=
4+6n
9•(-2)n
-
4
9
點(diǎn)評(píng):本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線
3
x-y-1=0的直線的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(msinx-cosx)cosx+cos2
π
2
-x)滿足f(
π
4
)=
3

(1)求函數(shù)f(x)的最小正周期及單調(diào)增區(qū)間;
(2)若△ABC所對(duì)應(yīng)邊分別為a、b、c,且a=2,b+c=3,f(A)=2,求△ABC面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某位同學(xué)進(jìn)行寒假社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷(xiāo)量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(°C)與該奶茶店的這種飲料銷(xiāo)量y(杯),得到如下數(shù)據(jù):
日    期1月11日1月12日1月13日1月14日1月15日
平均氣溫x(°C)91012118
銷(xiāo)量y(杯)2325302621
(1)若從這五組數(shù)據(jù)中隨機(jī)抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程cq=2q-1.
(參考公式:
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,
?
a
=
.
y
-
?
b
.
x
.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下給出一個(gè)算法的程序框圖(如圖所示),根據(jù)該程序框圖回答問(wèn)題.
(1)若輸入的四個(gè)數(shù)是5,3,8,12,則最后輸出的結(jié)果是什么?
(2)該算法是為什么問(wèn)題而設(shè)計(jì)的?寫(xiě)出算法的步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是R上的偶函數(shù),且f(x)在(-∞,0]上是增函數(shù),若f(a)≥f(2),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y滿足條件
x-y+5≥0
x+y≥0
x≤3.
則2x+4y的最小值為( �。�
A、-6B、6C、-12D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的N是5,那么輸出的P是( �。�
A、1B、24C、120D、720

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求棱長(zhǎng)為1的正四面體的外接球的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案