(本題滿分12分)已知橢圓C的焦點(diǎn)在y軸上,且離心率為.過點(diǎn)M(0,3)的直線l與橢圓C相交于兩點(diǎn)A、B.(1)求橢圓C的方程;(2)設(shè)P為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng)||<時(shí),求實(shí)數(shù)λ的取值范圍.

(Ⅰ)   (Ⅱ)  (-2,)∪(,2)


解析:

(1)由題知a2=mb2=1,∴ c2=m-1∴ ,解得m=4.

∴ 橢圓的方程為.……………4分

(2)當(dāng)l的斜率不存在時(shí),,不符合條件. ………5分

設(shè)l的斜率為k,則l的方程為y=kx+3.設(shè)A(x1,y1),B(x2,y2),P(x0,y0),

聯(lián)立l和橢圓的方程:  消去y,整理得(4+k2)x2+6kx+5=0,

∴ Δ=(6k)2-4×(4+k2)×5=16k2-80>0,解得k2>5.且,

=,

由已知有,整理得13k4-88k2-128<0,解得 ,

∴ 5<k2<8.………9分∵ ,即(x1,y2)+(x2,y2)= λ(x0,y0),

x1+x2=λx0,y1+y2=λy0,當(dāng)λ=0時(shí),x1+x2=,

顯然,上述方程無解.當(dāng)λ≠0時(shí),=,

P(x0,y0)在橢圓上,∴ ,

化簡(jiǎn)得.由 5<k2<8,可得3<2<4,∴ λ∈(-2,-)∪(,2). 即λ的取值范圍為(-2,)∪(,2).…12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題

(本題滿分12分)已知△的三個(gè)內(nèi)角、所對(duì)的邊分別為、.,且.(1)求的大。唬2)若.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,是它的左,右焦點(diǎn).

(1)若,且,求、的坐標(biāo);

(2)在(1)的條件下,過動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知橢圓的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案