求垂直于直線(xiàn)2x-6y+1=0并且與曲線(xiàn)y=x3+3x2-5相切的直線(xiàn)方程.
3x+y+6=0.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)在上不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈
R,a,b為常數(shù),已知曲線(xiàn)y=f(x)與y=g(x)在點(diǎn)(2,0)處有相同的切線(xiàn)l.
求a,b的值,并求出切線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某汽車(chē)的緊急剎車(chē)裝置在遇到特別情況時(shí),需在2 s內(nèi)完成剎車(chē),其位
移(單位:m)關(guān)于時(shí)間(單位:s)的函數(shù)為:s(t)=-3t3+t2+20,求:
(1)開(kāi)始剎車(chē)后1 s內(nèi)的平均速度;
(2)剎車(chē)1 s到2 s之間的平均速度;
(3)剎車(chē)1 s時(shí)的瞬時(shí)速度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=在點(diǎn)(-1,f(-1))處的切線(xiàn)方程為x+y+3=0.
(1)求函數(shù)f(x)的解析式.
(2)設(shè)g(x)=lnx.求證:g(x)≥f(x)在[1,+∞)上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)F(x)=f(x)-x2+3x+a在上只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x3-x2+ax-a(a∈R).
(1)當(dāng)a=-3時(shí),求函數(shù)f(x)的極值.
(2)若函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com