10.已知公比為2的等比數(shù)列{an},若a2+a3=2,則a4+a5=( 。
A.$\frac{1}{2}$B.1C.4D.8

分析 用a2,a3表示出a4,a5,即可得出答案.

解答 解:∵a4=a2q2=4a2,a5=a3q2=4a3
∴a4+a5=4(a2+a3)=8.
故選:D.

點評 本題考查了等比數(shù)列的性質,通項公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知向量$\overrightarrow a、\overrightarrow b、\overrightarrow c$是空間的一個單位正交基底,向量$\overrightarrow a+\overrightarrow b、\overrightarrow a-\overrightarrow b、\overrightarrow c$是空間的另一組基底,若向量$\overrightarrow p$在基底$\overrightarrow a、\overrightarrow b、\overrightarrow c$下的坐標是(1,3,4),求向量$\overrightarrow p$在基底$\overrightarrow a+\overrightarrow b、\overrightarrow a-\overrightarrow b、\overrightarrow c$下的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左,右焦點分別是F1,F(xiàn)2,點P在雙曲線上,且滿足∠PF2F1=2∠PF1F2=60°,則此雙曲線的離心率等于(  )
A.2$\sqrt{3}$-2B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{3}$+1D.2$\sqrt{3}$+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,若輸入a=5,b=2,則輸出n的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C的中心在坐標原點,焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$,過焦點垂直于x軸的直線與橢圓相交的弦長為1.
(1)求橢圓C的標準方程;
(2)若橢圓C長軸的左右端點分別為A1,A2,設直線x=-4與x軸交于點D,動點M是直線x=-4上異于點D的任意一點,直線A1M,A2M與橢圓C分別交于P,Q兩點,問直線PQ是否恒過定點?若是,求出定點坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n+1}$(n∈N*),則當n=2時,f(n)是$\frac{137}{60}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知一個三棱錐的三視圖如圖所示,則該三棱錐的體積( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=e|ln2x|-|x-$\frac{1}{4x}$|,若f(x1)=f(x2)且x1≠x2,則下面結論正確的是(  )
A.x1+x2-1>0B.x1+x2-1<0C.x2-x1>0D.x2-x1<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.運行如圖程序框圖,分別輸入t=1,5,則輸出S的和為(  )
A.10B.5C.0D.-5

查看答案和解析>>

同步練習冊答案