A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
分析 由題意可得ω•(-$\frac{π}{2}$)+$\frac{π}{4}$≥2kπ+0,且ω•($\frac{π}{2}$)+$\frac{π}{4}$≤2kπ+π,k∈Z,令k=0,可得ω≤$\frac{1}{2}$,由此可得結(jié)論.
解答 解:∵函數(shù)f(x)=cos(ωx+$\frac{π}{4}$)(ω>0)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞減,∴ω•(-$\frac{π}{2}$)+$\frac{π}{4}$≥2kπ+0,且ω•($\frac{π}{2}$)+$\frac{π}{4}$≤2kπ+π,k∈Z,
即ω≤$\frac{1}{2}$-4k,且ω≤4k+$\frac{3}{2}$.
令k=0,可得ω≤$\frac{1}{2}$,故ω的取值不可能為$\frac{3}{4}$,
故選:D.
點(diǎn)評 本題主要考查余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-9,3] | B. | [-3,3] | C. | [-5,3] | D. | [-9,-5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com