3.在如圖所示的長方體ABCD-A1B1C1D1中,已知A1(a,0,c),C(0,b,0),則點B1的坐標為(a,b,c).

分析 由如圖所示所建立的空間直角坐標系,以及A1,C的坐標,可以得知該長方形的長,寬,高,進而可以得知B1的點坐標.

解答 解:∵在如圖所示的長方體ABCD-A1B1C1D1中,已知A1(a,0,c),C(0,b,0),
∴可以得知AD=a,DC=b,DD1=c,
又∵長方體ABCD-A1B1C1D1,
∴可以得知B1的坐標為(a,b,c)
故答案為:(a,b,c).

點評 本題考查空間直角坐標系的定義以及由點坐標得出長方形的長度參量,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.連續(xù)擲一枚骰子兩次,則兩次骰子正面向上的點數(shù)之和為奇數(shù)的概率為(  )
A.$\frac{5}{12}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.某人對一地區(qū)人均工資x(千元)與該地區(qū)人均消費y(千元)進行統(tǒng)計調(diào)查,y與x有相關(guān)關(guān)系,得到回歸直線方程$\hat y$=0.66x+1.56.若該地區(qū)的人均消費水平為7.5千元,則該地區(qū)的人均工資收入為9(千元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.用部分自然數(shù)構(gòu)造如圖的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i,j∈N+),使得ai1=aii=i.每行中的其他各數(shù)分別等于其“肩膀”上的兩個數(shù)之和,a(i+1)j=ai(j-1)+aij(i≥2,j≥2).設(shè)第n(n∈N+)行的第二個數(shù)為bn(n≥2).
(1)寫出第7行的第三個數(shù); 
(2)寫出bn+1與bn的關(guān)系并求bn(n≥2);
(3)設(shè)cn=2(bn-1)+n,證明:$\frac{1}{c_2}$+$\frac{1}{c_4}$+$\frac{1}{c_6}$+…+$\frac{1}{{{c_{2n}}}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)有一正態(tài)總體,它的概率密度曲線是函數(shù)y=f(x)的圖象,且f(x)=$\frac{1}{{\sqrt{8π}}}{e^{-\frac{{{{(x-10)}^2}}}{8}}}$,則這個正態(tài)總體的期望與標準差分別是( 。
A.10與4B.10與2C.4與10D.2與10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知隨機變量ξ的分布列為
ξ-2-10123
P$\frac{1}{12}$$\frac{3}{12}$$\frac{4}{12}$$\frac{1}{12}$$\frac{2}{12}$$\frac{1}{12}$
若P(ξ2>x)=$\frac{1}{12}$,則實數(shù)x的取值范圍是[4,9).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.一個盒子里裝有三張卡片,分別標記有數(shù)字1,2,3,這三張卡片除標記的數(shù)字外完全相同,從中隨機有放回地抽取3次,每次抽取1張,求下列事件的概率.
(1)求“抽取的卡片上的數(shù)字滿足其中兩張之和等于第三張”的概率;
(2)求“抽取的卡片上的數(shù)字不完全相同”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知等比數(shù)列{an}的公比q=2,且a2,a3+1,a4成等差數(shù)列.
(1)求a1及an
(2)設(shè)bn=an+n,求數(shù)列{bn}的前5項和S5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)A1,A2,…,An(n≥4)為集合S={1,2,…,n}的n個不同子集,為了表示這些子集,作n行n列的數(shù)陣,規(guī)定第i行第j列的數(shù)為:${a_{ij}}=\left\{\begin{array}{l}0,\;i∉{A_j}\\ 1,\;i∈{A_j}\end{array}\right.$.則下列說法中,錯誤的是(  )
A.數(shù)陣中第一列的數(shù)全是0當且僅當A1=∅
B.數(shù)陣中第n列的數(shù)全是1當且僅當An=S
C.數(shù)陣中第j行的數(shù)字和表明集合Aj含有幾個元素
D.數(shù)陣中所有的n2個數(shù)字之和不超過n2-n+1

查看答案和解析>>

同步練習冊答案