設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是兩兩不等的常數(shù)),則++=   
【答案】分析:首先將函數(shù)式f(x)=(x-a)(x-b)(x-c)整理變形為f(x)=x3-(a+b+c)x2+(ab+bc+ca)x-abc,再利用導(dǎo)數(shù)將求出的f′(a),f′(b),f′(c)的表達(dá)式代入即可.
解答:解:∵f(x)=x3-(a+b+c)x2+(ab+bc+ca)x-abc,
∴f′(x)=3x2-2(a+b+c)x+ab+bc+ca.
又f′(a)=(a-b)(a-c),
同理f′(b)=(b-a)(b-c),
f′(c)=(c-a)(c-b).
++=0.
點(diǎn)評(píng):本題考查的是導(dǎo)數(shù)的運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無(wú)窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學(xué)試卷(一)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省蘇州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案