19.已知O,F(xiàn)分別為雙曲線E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的中心和右焦點(diǎn),點(diǎn)G,M分別在E的漸近線和右支,F(xiàn)G⊥OG,GM∥x軸,且|OM|=|OF|,則E的離心率為(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.$\sqrt{2}$

分析 設(shè)M(m,n),則G($\frac{an}$,n),利用FG⊥OG,求出n,可得m,利用|OM|=|OF|,求出E的離心率.

解答 解:設(shè)M(m,n),則G($\frac{an}$,n),
∵FG⊥OG,∴$\frac{n}{\frac{an}-c}•\frac{a}=-1$,∴n=$\frac{ab}{c}$,
∴$\frac{{m}^{2}}{{a}^{2}}-\frac{{a}^{2}}{{c}^{2}}$=1,∴m2=$\frac{{a}^{2}{c}^{2}+{a}^{4}}{{c}^{2}}$,
∵|OM|=|OF|,∴$\frac{{a}^{2}{c}^{2}+{a}^{4}}{{c}^{2}}$+$\frac{{a}^{2}^{2}}{{c}^{2}}$=c2,
∴2a2=c2,∴e=$\frac{c}{a}$=$\sqrt{2}$,
故選D.

點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,確定M的坐標(biāo)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)拋物線E:y2=2px(p>0)上的點(diǎn)M(x0,4)到焦點(diǎn)F的距離|MF|=$\frac{5}{4}$x0
(Ⅰ)求拋物線E的方程;
(Ⅱ)如圖,直線l:y=k(x+2)與拋物線E交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)是C,求證:直線BC恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖是一個(gè)正方體被切掉部分后所得幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{{8\sqrt{2}}}{3}$D.$\frac{{4\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將函數(shù)f(x)=cos2ωx的圖象向右平移$\frac{3π}{4ω}$個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在$[-\frac{π}{4},\frac{π}{6}]$上為減函數(shù),則正實(shí)數(shù)ω的最大值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx-2ax,a∈R.
(1)若函數(shù)y=f(x)存在與直線2x-y=0平行的切線,求實(shí)數(shù)a的取值范圍;
(2)設(shè)g(x)=f(x)+$\frac{1}{2}{x^2}$,若g(x)有極大值點(diǎn)x1,求證:$\frac{{ln{x_1}}}{x_1}+\frac{1}{{{x_1}^2}}$>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={0,2,4,6},B={x∈N|2x<33},則集合A∩B的子集個(gè)數(shù)為( 。
A.8B.7C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知正項(xiàng)等比數(shù)列{bn}的前n項(xiàng)和為Sn,b3=4,S3=7,數(shù)列{an}滿足an+1-an=n+1(n∈N+),且a1=b1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某化工廠擬建一個(gè)下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計(jì)厚度,單位:米),按計(jì)劃容積為72π立方米,且h≥2r,假設(shè)其建造費(fèi)用僅與表面積有關(guān)(圓柱底部不計(jì)),已知圓柱部分每平方米的費(fèi)用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費(fèi)用為y千元.
(Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(Ⅱ)求建造費(fèi)用最小時(shí)的r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=|x|B.y=x-2C.y=ex-e-xD.y=-x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案