數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和為Sn,滿(mǎn)足Sn2=an(Sn-
1
2
).
(1)求Sn的表達(dá)式;
(2)設(shè)bn=
Sn
2n+1
,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,不等式Tn
1
18
(m2-5m)對(duì)所有的n∈N*恒成立,求正整數(shù)m的最大值.
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)當(dāng)n≥2時(shí),an=Sn-Sn-1,代入利用等差數(shù)列的通項(xiàng)公式即可得出;
(2)利用“裂項(xiàng)求和”、一元二次不等式的解法即可得出.
解答: 解:(1)∵Sn2=an(Sn-
1
2
)=(Sn-Sn-1)(Sn-
1
2
)

化為
1
Sn
-
1
Sn-1
=2
,
∴數(shù)列{
1
Sn
}
是首項(xiàng)為
1
S1
=
1
a1
=1,公差為2的等差數(shù)列.
1
Sn
=1+2(n-1)=2n-1,
∴Sn=
1
2n-1

(2)bn=
Sn
2n+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,
故Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)
1
3

又∵不等式Tn
1
18
(m2-5m)對(duì)所有的n∈N*恒成立,
1
3
1
18
(m2-5m),
化簡(jiǎn)得:m2-5m-6≤0,解得:-1≤m≤6.
∴正整數(shù)m的最大值為6.
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用、“裂項(xiàng)求和”、等差數(shù)列的通項(xiàng)公式、一元二次不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)圓內(nèi)一點(diǎn)的最長(zhǎng)弦與最短弦所在直線方程分別為(a+1)x+(2a-1)y+a+8=0與ax-2y+4=0,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=sinxcosx+sin2x可化為
 

2
2
sin(2x-
π
4
)+
1
2

2
2
sin(2x+
π
4
)-
1
2
;
③sin(2x-
π
4
)+
1
2
;
④2sin(2x+
4
)+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a,b均為區(qū)間[0,1]內(nèi)的隨機(jī)數(shù),則關(guān)于x的不等式bx2+ax+
1
4
<0有實(shí)數(shù)解的概率為( 。
A、
1
2
B、
1
6
C、
1
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四組中f(x),g(x)表同一函數(shù)的是( 。
A、f(x)=x,g(x)=(
x
)2
B、f(x)=x,g(x)=
3x3
C、f(x)=1,g(x)=
x
x
D、f(x)=x,g(x)=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題:
①“所有能被2整除的整數(shù)都是偶數(shù)”的否定是“所有能被2整除的整數(shù)不都是偶數(shù)”;
②“菱形的兩條對(duì)角線互相垂直”的逆命題;
③“a,b,c∈R,若a>b,則a+c>b+c”的逆否命題;
④“若a+b≠3,則a≠1或b≠2”的否命題. 
上述命題中真命題的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C:y=xex在點(diǎn)M(1,e)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)sinx+cosx=-
1
2
(其中x∈(0,π),則 sin2x=
 
; cos2x的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案