分析 (1)若f(m+1)-f(2m-1)>0,則f(m+1)>f(2m-1),結(jié)合f(x)是定義在[-3,3]上的增函數(shù),可得-3≤2m-1<m+1≤3,解得m的取值范圍;
(2)若函數(shù)f(x)是奇函數(shù),且f(2)=1,則解不等式f(x+1)+1>0可化為-2<x+1≤3,解得答案.
解答 解:(1)若f(m+1)-f(2m-1)>0,
則f(m+1)>f(2m-1),
∵f(x)是定義在[-3,3]上的增函數(shù),
∴-3≤2m-1<m+1≤3,
解得-1≤m<2,
即m的范圍是[-1,2).
(2)∵函數(shù)f(x)是奇函數(shù),且f(2)=1,
∴f(-2)=-f(2)=-1,
∵f(x+1)+1>0,
∴f(x+1)>-1,
∴f(x+1)>f(-2),
∴-2<x+1≤3,
∴-3<x≤2.
∴不等式的解集為{x|-3<x≤2}
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是抽象函數(shù)的應(yīng)用,函數(shù)的單調(diào)性,函數(shù)的奇偶性,函數(shù)的定義域,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{16}$ | B. | $\frac{3}{16}$ | C. | $\frac{2}{16}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2n | B. | n2+n | C. | 2n-1 | D. | n2+1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com