14.已知a、b∈R,若3-4i3=$\frac{2-bi}{a+i}$,則a+b等于( 。
A.-9B.5C.13D.9

分析 根據(jù)對(duì)應(yīng)關(guān)系得到關(guān)于a,b的方程組,解出即可.

解答 解:若3-4i3=$\frac{2-bi}{a+i}$,
則(3+4i)(a+i)=2-bi,
則3a-4+(3+4a)i=2-bi,
故$\left\{\begin{array}{l}{3a-4=2}\\{3+4a=-b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=2}\\{b=-11}\end{array}\right.$
故a+b=-9,
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算,考查對(duì)應(yīng)關(guān)系以及解方程組問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2,$AB=DP=2\sqrt{2}$,E為CD的中點(diǎn),點(diǎn)F在線段PB上.
(Ⅰ)求證:AD⊥PC;
(Ⅱ)試確定點(diǎn)F的位置,使得直線EF與平面PDC所成的角和直線EF與平面ABCD所成的角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,短軸長(zhǎng)為2.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若圓O:x2+y2=1的切線l與曲線C相交于A、B兩點(diǎn),線段AB的中點(diǎn)為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知奇函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),f(x)=x(1-x),則f(x)的解析式為f(x)=$\left\{\begin{array}{l}{x(1-x),x<0}\\{0,x=0}\\{x(1+x),x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.把3男2女共5名新生分配給甲、乙兩個(gè)班,每個(gè)班分配的新生不少于2名,且甲班至少分配1名女生,則不同的分配方案種數(shù)為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{ax-y-a≤0}\end{array}\right.$,若z=2x+y的最大值為$\frac{7}{2}$,則a的值為( 。
A.$-\frac{7}{2}$B.0C.1D.$-\frac{7}{2}$或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若正實(shí)數(shù)x,y滿足x+y=1,則$\frac{y}{x}+\frac{4}{y}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={x|-1<x<3},B={x|x<2},則A∩B={x|-1<x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)$f(x)=\frac{{1+{e^{2x}}}}{{1-{e^{2x}}}}•x$(其中e是自然對(duì)數(shù)的底數(shù))的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案