【題目】下列說法中正確的是( )
A.“x>5”是“x>3”的必要不充分條件
B.命題“對x∈R,恒有x2+1>0”的否定是“x∈R,使得x2+1≤0”
C.m∈R,使函數(shù)f(x)=x2+mx(x∈R)是奇函數(shù)
D.設(shè)p,q是簡單命題,若p∨q是真命題,則p∧q也是真命題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的零點(diǎn);
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),若對恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生研究性學(xué)習(xí)小組發(fā)現(xiàn),學(xué)生上課的注意力指標(biāo)隨著聽課時(shí)間的變化而變化.老師講課開始時(shí)學(xué)生的興趣激增,接下來學(xué)生的興趣將保持較理想的狀態(tài)一段時(shí)間,隨后學(xué)生的注意力開始分散.該小組發(fā)現(xiàn)注意力指標(biāo)與上課時(shí)刻第 分鐘末的關(guān)系如下設(shè)上課開始時(shí),: .若上課后第分鐘末時(shí)的注意力指標(biāo)為.
(1)求的值;
(2)上課后第分鐘末和下課前 分鐘末比較,哪個(gè)時(shí)刻注意力更集中?
(3)在一節(jié)課中,學(xué)生的注意力指標(biāo)至少達(dá)到的時(shí)間能保持多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在上的函數(shù),函數(shù),當(dāng)時(shí),取得極大值,且函數(shù)
的圖象關(guān)于點(diǎn)對稱.
(1)求函數(shù)的表達(dá)式;
(2)求證:當(dāng)時(shí), 為自然對數(shù)的底數(shù));
(3)若,數(shù)列中是否存在?若存在,求出所有相等的兩項(xiàng),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在6和768之間插入6個(gè)數(shù),使它們組成共8項(xiàng)的等比數(shù)列,則這個(gè)等比數(shù)列的第6項(xiàng)是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的n值是8,則從集合中所有滿足條件的S0值為( )
A.0 B.1 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解決某個(gè)問題的算法如下:
第一步,給定一個(gè)實(shí)數(shù)n(n≥2).
第二步,判斷n是否是2,若n=2,則n滿足條件;若n>2,則執(zhí)行第三步.
第三步,依次從2到n-1檢驗(yàn)?zāi)懿荒苷?/span>n,若都不能整除n,則n滿足條件.
則滿足上述條件的實(shí)數(shù)n是( )
A.質(zhì)數(shù) B.奇數(shù)
C.偶數(shù) D.約數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com