【題目】余江人熱情好客,凡逢喜事,一定要擺上酒宴,請(qǐng)親朋好友、同事高鄰來(lái)助興慶賀.歡度佳節(jié),迎親嫁女,喬遷新居,學(xué)業(yè)有成,仕途風(fēng)順,添丁加口,朋友相聚,都要以酒示意,借酒表達(dá)內(nèi)心的歡喜.而凡有酒宴,一定要?jiǎng)澣瑒澣怯嘟莆幕奶厣?余江人劃拳注重禮節(jié),形式多樣;講究規(guī)矩,蘊(yùn)含著濃厚的傳統(tǒng)文化和淳樸的民俗特色.在禮節(jié)上,講究“尊老尚賢敬遠(yuǎn)客”一般是東道主自己或委托桌上一位酒量好的劃拳高手來(lái)“做關(guān)”,——就是依次陪桌上會(huì)劃拳的劃一年數(shù)十二拳(也有半年數(shù)六拳).十二拳之后晚輩還要敬長(zhǎng)輩一杯酒.
再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他還要敬他叔叔一杯,規(guī)則如下:前兩拳只有小明猜叔贏叔叔,叔叔才會(huì)喝下這杯敬酒,且小明也要陪喝,如果第一拳小明沒(méi)猜到,則小明喝下第一杯酒,繼續(xù)猜第二拳,沒(méi)猜到繼續(xù)喝第二杯,但第三拳不管誰(shuí)贏雙方同飲自己杯中酒,假設(shè)小明每拳贏叔叔的概率為,問(wèn)在敬酒這環(huán)節(jié)小明喝酒三杯的概率是多少( )
(猜拳只是一種娛樂(lè),喝酒千萬(wàn)不要過(guò)量。
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B分別是直線y=x和y=﹣x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2 ,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過(guò)點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),求直線l的方程;
②試問(wèn)在x軸上是否存在點(diǎn)E(m,0),使 恒為定值?若存在,求出E點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(x、y)滿足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},則求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],則求x>y的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是圓外一點(diǎn),過(guò)點(diǎn)作圓的切線,切點(diǎn)為,記四邊形的面積為,當(dāng)在圓上運(yùn)動(dòng)時(shí), 的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知E、F分別在正方體ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1 , 則面AEF與面ABC所成的二面角的正切值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)的直線與橢圓交于兩點(diǎn),過(guò)與平行的直線與橢圓交于兩點(diǎn),求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,底面是邊長(zhǎng)為的菱形, ,四邊形是矩形,平面平面, , 是的中點(diǎn).
(1)求證: 平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項(xiàng)和,則使得Sn達(dá)到最大值的n是( )
A.21
B.20
C.19
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面為矩形, 底面, ,
為中點(diǎn).
(Ⅰ)在圖中作出平面與的交點(diǎn),并指出點(diǎn)所在位置(不要求給出理由);
(Ⅱ)在線段上是否存在一點(diǎn),使得直線與平面所成角的正弦值為,若存在,請(qǐng)說(shuō)明點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com