分析 由題意求得直線方程,并代入拋物線方程,由一元二次方程根與系數(shù)的關(guān)系及拋物線過焦點(diǎn)的弦長公式得答案.
解答 解:由y2=4x,得其焦點(diǎn)坐標(biāo)為F(1,0),
設(shè)A(x1,y1),B(x2,y2),
又直線的傾斜角為45o,則其斜率k=1,
∴A、B所在直線方程為y=x-1.
聯(lián)立得:$\left\{\begin{array}{l}{y=x-1}\\{{y}^{2}=4x}\end{array}\right.$,整理得:x2-6x+1=0.
由韋達(dá)定理可知:x1+x2=6.
∴由拋物線的性質(zhì)可知:|AB|=x1+x2+p=6+2=8;
故答案為:8.
點(diǎn)評 本題考查了拋物線的簡單幾何性質(zhì),考查了直線與圓錐曲線的關(guān)系,一元二次方程根與系數(shù)的關(guān)系,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | $1+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x<3x | B. | $\frac{1}{{{x^2}-x+1}}$>$\frac{1}{{{x^2}+x+1}}$ | ||
C. | $\frac{1}{{{x^2}+1}}$>$\frac{1}{{{x^2}+2}}$ | D. | 2|x|<x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{5}{2}$ | C. | 3 | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∧(?q) | C. | (?p)∧q | D. | (?p)∧(?q) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com