1.一臺(tái)機(jī)器使用的時(shí)間較長(zhǎng),但還可以使用,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器的運(yùn)轉(zhuǎn)的速度而變化,下表為抽樣試驗(yàn)的結(jié)果:
 轉(zhuǎn)速x(轉(zhuǎn)/秒) 2 4 5 6 8
 每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件) 30 40 60 50 70
(1)如果y對(duì)x有線性相關(guān)關(guān)系,求回歸直線方程;
(2)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為89個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
附:最小二乘法估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$
參考數(shù)值:$\sum_{i}^{5}{x}_{i}{y}_{i}$=1380,$\sum_{i}^{5}{{x}_{i}}^{2}$=145.

分析 (1)先求出橫標(biāo)和縱標(biāo)的平均數(shù),代入求系數(shù)b的公式,利用最小二乘法得到系數(shù),再根據(jù)公式求出a的值,寫出線性回歸方程,得到結(jié)果.
(2)允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為89個(gè),即線性回歸方程的預(yù)報(bào)值不大于89,寫出不等式,解關(guān)于x的一次不等式,得到要求的機(jī)器允許的轉(zhuǎn)數(shù).

解答 解:(1)$\overline{x}$=5,$\overline{y}$=50,$\sum_{i}^{5}{x}_{i}{y}_{i}$=1380,$\sum_{i}^{5}{{x}_{i}}^{2}$=145
∴$\stackrel{∧}$=$\frac{1380-5×5×50}{145-5×5×5}$=6.5,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=17.5
∴回歸直線方程為:$\stackrel{∧}{y}$=6.5x+17.5;
(3)由y≤89得6.5x+17.5≤89,解得x≤11
∴機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制范圍為(0,11].

點(diǎn)評(píng) 本題考查線性回歸分析,考查線性回歸方程,考查線性回歸方程的應(yīng)用,考查不等式的解法,是一個(gè)綜合題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.曲線y=1+$\sqrt{4-{x}^{2}}$與直線y=k(x-2)+4有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是( 。
A.$\frac{5}{12}$<k<$\frac{3}{4}$B.$\frac{5}{12}$<k≤$\frac{3}{4}$C.$\frac{1}{3}$<k<$\frac{3}{4}$D.0<k<$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2-an,n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=n•an,求數(shù)列{bn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示的程序框圖,若輸入的a、k分別89、2,則輸出的數(shù)為( 。
A.1011001(2)B.1101001(2)C.1110010(2)D.1011010(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=sinx在其定義域上的奇偶性是(  )
A.奇函數(shù)B.偶函數(shù)C.既奇且偶的函數(shù)D.非奇非偶的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{x^2}{4}$+y2=1上的一個(gè)點(diǎn)P(x,y),求u=2x+y的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.以正方體的頂點(diǎn)為頂點(diǎn)的四面體個(gè)數(shù)有58.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量$\overrightarrow{m}$=(a,$\sqrt{3}$b)與$\overrightarrow{n}$=(cosA,sinB)平行.
(I)求A;
(II)若a=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求該三角形的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{a^2}{x}$,g(x)=x+lnx,其中a≥1.
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求h(x)=f(x)+g(x)在(1,h(1))處的切線方程;
(2)若對(duì)任意的x1,x2∈[1,e](e為自然對(duì)數(shù)的底數(shù))都有f(x1)≥g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案