【題目】如圖,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
(Ⅰ)求證:AE∥平面DCF;
(Ⅱ)當(dāng)AB的長為何值時,二面角A﹣EF﹣C的大小為60°?

【答案】證明:(Ⅰ)過點E作EG⊥CF交CF于G,連接DG,

可得四邊形BCGE為矩形.又ABCD為矩形,
所以AD⊥∥EG,從而四邊形ADGE為平行四邊形,故AE∥DG.
因為AE平面DCF,DG平面DCF,所以AE∥平面DCF.
(Ⅱ)解:過點B作BH⊥EF交FE的延長線于H,連接AH.

由平面ABCD⊥平面BEFG,AB⊥BC,得
AB⊥平面BEFC,
從而AH⊥EF,
所以∠AHB為二面角A﹣EF﹣C的平面角.
在Rt△EFG中,因為EG=AD=
又因為CE⊥EF,所以CF=4,
從而BE=CG=3.
于是BH=BEsin∠BEH=
因為AB=BHtan∠AHB,
所以當(dāng)AB= 時,二面角A﹣EF﹣G的大小為60°
【解析】(Ⅰ)過點E作EG⊥CF并CF于G,連接DG,證明AE平行平面DCF內(nèi)的直線DG,即可證明AE∥平面DCF;
(Ⅱ)過點B作BH⊥EF交FE的延長線于H,連接AH,說明∠AHB為二面角A﹣EF﹣C的平面角,通過二面角A﹣EF﹣C的大小為60°,求出AB即可.
【考點精析】根據(jù)題目的已知條件,利用直線與平面平行的判定的相關(guān)知識可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高一學(xué)生周末的“閱讀時間”,從高一年級中隨機抽取了名學(xué)生進行調(diào)査,獲得了每人的周末“閱讀時間”(單位:小時),按照分成組,制成樣本的頻率分布直方圖如圖所示:

(Ⅰ)求圖中的值;

(Ⅱ)估計該校高一學(xué)生周末“閱讀時間”的中位數(shù);

(Ⅲ)用樣本頻率代替概率. 現(xiàn)從全校高一年級隨機抽取名學(xué)生,其中有名學(xué)生“閱讀時間”在小時內(nèi)的概率為,其中.當(dāng)取最大時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)y=x3m9(m∈N*)的圖象關(guān)于y軸對稱,且在(0,+∞)上函數(shù)值隨x增大而減小.
(1)求m的值;
(2)求滿足(a+1) <(3﹣2a) 的a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高新技術(shù)公司要生產(chǎn)一批新研發(fā)的款手機和款手機,生產(chǎn)一臺款手機需要甲材料,乙材料,并且需要花費1天時間,生產(chǎn)一臺款手機需要甲材料,乙材料,也需要1天時間,已知生產(chǎn)一臺款手機利潤是1000元,生產(chǎn)一臺款手機的利潤是2000元,公司目前有甲、乙材料各,則在不超過120天的情況下,公司生產(chǎn)兩款手機的最大利潤是__________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P(﹣2,3)是函數(shù)y= 圖象上的點,Q是雙曲線在第四象限這一分支上的動點,過點Q作直線,使其與雙曲線y= 只有一個公共點,且與x軸、y軸分別交于點C、D,另一條直線y= x+6與x軸、y軸分別交于點A、B.則
(1)O為坐標(biāo)原點,三角形OCD的面積為
(2)四邊形ABCD面積的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函數(shù)f(x)在[﹣1,3m]上不具有單調(diào)性,求實數(shù)m的取值范圍;
(2)若f(1)=g(1)
①求實數(shù)a的值;
②設(shè)t1= f(x),t2=g(x),t3=2x , 當(dāng)x∈(0,1)時,試比較t1 , t2 , t3的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 證明:PA⊥BD;
(Ⅱ) 設(shè)PD=AD=1,求直線PC與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司制定了一個激勵銷售人員的獎勵方案:當(dāng)銷售利潤不超過8萬元時,按銷售利潤的15%進行獎勵;當(dāng)銷售利潤超過8萬元時,若超出A萬元,則超出部分按log5(2A+1)進行獎勵.記獎金為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出獎金y關(guān)于銷售利潤x的關(guān)系式;
(2)如果業(yè)務(wù)員小江獲得3.2萬元的獎金,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市環(huán)保局空氣質(zhì)量監(jiān)控過程中,每隔x天作為一個統(tǒng)計周期.最近x天統(tǒng)計數(shù)據(jù)如表

空氣污染指數(shù)
(單位:μg/m3

[0,50]

(50,100]

(100,150]

(150,200]

天數(shù)

15

40

35

y

(Ⅰ)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(Ⅱ)為了創(chuàng)生態(tài)城市,該市提出要保證每個統(tǒng)計周期“空氣污染指數(shù)大于150μg/m3的天數(shù)占比不超過15%,平均空氣污染指數(shù)小于100μg/m3”,請問該統(tǒng)計周期有沒有達到預(yù)期目標(biāo).

查看答案和解析>>

同步練習(xí)冊答案