【題目】已知橢圓 的左、右焦點(diǎn)分別為 ,其離心率 ,點(diǎn) 為橢圓上的一個(gè)動(dòng)點(diǎn),△ 面積的最大值為 .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若 是橢圓上不重合的四個(gè)點(diǎn), 相交于點(diǎn) , 的取值范圍.

【答案】
(1)解:由題意得,當(dāng)點(diǎn) 是橢圓的上、下頂點(diǎn)時(shí),△ 的面積取最大值,

此時(shí) 所以 因?yàn)? 所以 , ,

所以橢圓方程為


(2)解:由(1)得橢圓方程為 ,則 的坐標(biāo)為 ,

因?yàn)? ,所以 .

①當(dāng)直線 中有一條直線斜率不存在時(shí),易得 .

②當(dāng)直線 斜率 存在且 時(shí),則其方程為 ,設(shè)

則點(diǎn) 、 的坐標(biāo)是方程組 的兩組解,

所以

所以

所以 .

直線 的方程為 .

同理可得 ,

,則

因?yàn)? ,所以 ,

所以

所以


【解析】(1)由題意可知當(dāng)點(diǎn)P為橢圓的上下頂點(diǎn)時(shí),三角形的面積最大再根據(jù)橢圓的離心率可得到關(guān)于a與c的方程解出方程即可求出其值,進(jìn)而可得到橢圓的方程。(2)首先求出AC、BD中有一條直線不存在斜率時(shí),當(dāng)直線AC存在斜率且不為零時(shí),由點(diǎn)斜式寫(xiě)出直線的方程再聯(lián)立橢圓的方程消元得到關(guān)于x的一元二次方程,由韋達(dá)定理求出兩根之和與兩根之積代入到弦長(zhǎng)公式求得的代數(shù)式,把k換為即可得到所以用k表示出結(jié)果的代數(shù)式,再由整體思想設(shè)出t=k2+1根據(jù)t的范圍,結(jié)合代數(shù)式的幾何意義得到取值范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(1,2), =(2,﹣3).
(1)若 垂直,求λ的值;
(2)求向量 方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為得到函數(shù)y=sin2x﹣cos2x的圖象,可由函數(shù)y= sin2x的圖象( )
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|a﹣1<x<a+1},B={x|x<﹣1或x>2}.
(1)若A∩B=,求實(shí)數(shù)a的取值范圍;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 上一點(diǎn)且縱坐標(biāo)為 , , 上的兩個(gè)動(dòng)點(diǎn),且

(1)求過(guò)點(diǎn) ,且與 恰有一個(gè)公共點(diǎn)的直線 的方程;
(2)求證: 過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且n+1=1+Sn對(duì)一切正整數(shù)n恒成立.
(1)試求當(dāng)a1為何值時(shí),數(shù)列{an}是等比數(shù)列,并求出它的通項(xiàng)公式;
(2)在(1)的條件下,當(dāng)n為何值時(shí),數(shù)列 的前n項(xiàng)和Tn取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sin2
(Ⅰ) 求角A的大小;
(Ⅱ) 若b+c=2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A是圓C:x2+y2+ax+4y+10=0上任意一點(diǎn),點(diǎn)A關(guān)于直線x+2y-1=0的對(duì)稱點(diǎn)也在圓C上,則實(shí)數(shù)a的值為( )
A.10
B.-10
C.-4
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 ,直線 .
(1)若直線 與圓 交于不同的兩點(diǎn) ,當(dāng) 時(shí),求 的值;
(2)若 是直線 上的動(dòng)點(diǎn),過(guò) 作圓 的兩條切線 ,切點(diǎn)為 ,探究:直線 是否過(guò)定點(diǎn)?若過(guò)定點(diǎn)則求出該定點(diǎn),若不存在則說(shuō)明理由;
(3)若 為圓 的兩條相互垂直的弦,垂足為 ,求四邊形 的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案