13.方程ex=2-x的解所在的一個(gè)區(qū)間為(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

分析 將x=-1,x=0,x=1代入方程轉(zhuǎn)化為函數(shù)的表達(dá)式,結(jié)合零點(diǎn)的判定定理,得出答案.

解答 解:方程ex=2-x的解所在的一個(gè)區(qū)間就是函數(shù)f(x)=ex-2+x的零點(diǎn)所在區(qū)間.
∵f(-1)=$\frac{1}{e}$+1-2=$\frac{1}{e}$-1<0,f(0)=1-2=-1<0,
f(1)=e-1-2<0,f(2)=e2-4>0,
∴函數(shù)f(x)的零點(diǎn)在(1,2)內(nèi),
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn)的判定定理,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在五面體ABCDEF中,底面ABCD是正方形,△ADE,△BCF都是等邊三角形,EF∥AB,且EF>AB,M,O分別為EF,BD的中點(diǎn),連接MO.
(Ⅰ)求證:MO⊥底面ABCD;
(Ⅱ)若EF=2AB,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)向量$\overrightarrow{a}$=(2tanα,tanβ),向量$\overrightarrow$=(4,-3),且$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{0}$,則tan(α+β)等于( 。
A.$\frac{1}{7}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.-$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=kx3-3kx2+b在區(qū)間[-2,2]上的最大值為3,最小值為-17,求k,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐 P-ABCD中,底面是邊長(zhǎng)為a的正方形,側(cè)棱PD=a,PA=PC=$\sqrt{2}$a.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“a>b”是“a2>b2”的__________條件( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知實(shí)數(shù)a>0,且函數(shù)$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$為奇函數(shù).判斷函數(shù)f(x)的單調(diào)性,并用單調(diào)性的定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,四面體ABCD中,O、E分別為BD、BC的中點(diǎn),且CA=CB=CD=BD=$\sqrt{2}$,AB=AD=1,則異面直線AB與CD所成角的正切值為.( 。
A.$\sqrt{7}$B.$\frac{\sqrt{7}}{8}$C.$\frac{\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在數(shù)列{an}中,a1=2,2an+1=2an+1,則a2015的值是( 。
A.1009B.1008C.1010D.1011

查看答案和解析>>

同步練習(xí)冊(cè)答案