tan2A•tan(30°-A)+tan2Atan(60°-A)+tan(30°-A)•tan(60°-A)=
 
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡求值
專題:計(jì)算題
分析:先對(duì)原式進(jìn)行整理,然后利用正切的兩角和公式分別求得tan(30°-A)+tan(60°-A)和tan(30°-A)tan(60°-A)]代入,然后利用誘導(dǎo)公式化簡整理,求得答案.
解答: 解:原式=tan2A[tan(30°-A)+tan(60°-A)]+[tan(30°-A)tan(60°-A)]
=tan2Atan[(30°-A)+(60°-A)][1-tan(30°-A)tan(60°-A)]+[tan(30°-A)tan(60°-A)]
=tan2Atan(90°-2A)[1-tan(30°-A)tan(60°-A)]+[tan(30°-A)tan(60°-A)]
=tan2A•cot2A[1-tan(30°-A)tan(60°-A)]+[tan(30°-A)tan(60°-A)]
=1
故答案為:1
點(diǎn)評(píng):本題主要考查了正切的兩角和公式和運(yùn)用誘導(dǎo)公式化簡求值.考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)知識(shí)和基本公式的記憶.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:2f(x)=
3
(sinx+cosx)2+2cos2x-(1+
3
),(x∈R)

(1)請(qǐng)說明函數(shù)y=f(x)的圖象可由函數(shù)y=sin2x的圖象經(jīng)過怎樣的變換得到;
(2)設(shè)函數(shù)y=f(x)圖象位于y軸右側(cè)的對(duì)稱中心從左到右依次為A1、A2、A3、A4、…、An…、(n∈N*),試求A4的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司需將一批貨物從甲地運(yùn)到乙地,現(xiàn)有汽車、火車兩種運(yùn)輸工具可供選擇,若該貨物在運(yùn)輸過程中(含裝卸時(shí)間)的損耗為300元/h,其他主要參考數(shù)據(jù)如下:
運(yùn)輸
工具
途中速度
(km/h)
途中費(fèi)用
(元/km)
裝卸時(shí)間
(h)
裝卸費(fèi)用
(元)
汽車50821000
火車100441800
則如何根據(jù)運(yùn)輸距離的遠(yuǎn)近選擇運(yùn)輸工具,使運(yùn)輸過程中的費(fèi)用與損耗之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(a≠0)有且僅有唯一的實(shí)數(shù)x滿足f(x)≤0.
(1)數(shù)列{an}前n項(xiàng)和Sn滿足Sn=f(n)-4,求{an}的通項(xiàng)公式;
(2)從數(shù)列{an}中依次取出第1項(xiàng),第2項(xiàng),第4項(xiàng),…第2n-1項(xiàng),…組成子數(shù)列{bn},求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)工人在上班時(shí)間[0,5](單位:小時(shí))內(nèi)看管兩臺(tái)機(jī)器.每天機(jī)器出故障的時(shí)刻是任意的,一臺(tái)機(jī)器出了故障,就需要一段時(shí)間檢修,在檢修期間另一臺(tái)機(jī)器也出了故障,稱為二機(jī)器“會(huì)面“.如果每臺(tái)機(jī)器的檢修時(shí)間都是1小時(shí),則此工人在上班時(shí)間內(nèi),二機(jī)器會(huì)面的概率是( 。
A、
16
25
B、
9
25
C、
1
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
2x-x2
lg(2x-1)
+
sinx
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)數(shù)列{an}為一等比數(shù)列,且a2=4,a4=16.求:
lim
n→∞
lgan+1+lgan+2+…+lga2n
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

AD、BE、CF為△ABC的三條高,D、E、F是垂足,若B=45°,C=60°求
DE
DF
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年安徽省淮北市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)已知橢圓C:(a>b>0)的上頂點(diǎn)為A,左,右焦點(diǎn)分別為F1,F(xiàn)2,且橢圓C過點(diǎn)P(),以AP為直徑的圓恰好過右焦點(diǎn)F2.

(1)求橢圓C的方程;

(2)若動(dòng)直線l與橢圓C有且只有一個(gè)公共點(diǎn),試問:在軸上是否存在兩定點(diǎn),使其到直線l的距離之積為1?若存在,請(qǐng)求出兩定點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案