已知拋物線過點(diǎn).
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過點(diǎn),且圓在點(diǎn)的切線恰是拋物線在點(diǎn)的切線,求圓的方程;
(Ⅲ)如圖,點(diǎn)為軸上一點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),過點(diǎn)作一條直線與拋物線交于兩點(diǎn),若,證明: .
(I);(II);(Ⅲ)見解析。
【解析】
試題分析:(I)
(II)由 得 所以拋物線 在點(diǎn)處切線的斜率為
過點(diǎn)且與切線垂直的直線方程為:,即,令得
圓心,半徑
圓的方程為:
(Ⅲ)設(shè)直線AB的方程為 代入拋物線方程得
設(shè)A、B兩點(diǎn)的坐標(biāo)分別是 、、x2是方程①的兩根.
所以 ①
由得
即、
由①、②可得
又點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn),故點(diǎn)Q的坐標(biāo)是(0,-m),從而.
所以
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì);圓的簡(jiǎn)單性質(zhì);導(dǎo)數(shù)的幾何意義;直線與拋物線的綜合應(yīng)用。
點(diǎn)評(píng)::研究直線與拋物線的綜合問題,通常的思路是:轉(zhuǎn)化為研究方程組的解的問題,利用直線方程與拋物線方程所組成的方程組消去一個(gè)變量后,將交點(diǎn)問題(包括公共點(diǎn)個(gè)數(shù)、與交點(diǎn)坐標(biāo)有關(guān)的問題)轉(zhuǎn)化為一元二次方程根的問題,結(jié)合根與系數(shù)的關(guān)系及判別式解決問題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都外國語學(xué)院高三2010-2011學(xué)年9月月考數(shù)學(xué)試題(理科) 題型:選擇題
已知拋物線過點(diǎn),且以圓的切線為準(zhǔn)線,則拋物線的焦點(diǎn)的軌跡方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆北京市海淀區(qū)高三上學(xué)期期末考試文科數(shù)學(xué) 題型:填空題
已知拋物線過點(diǎn),那么點(diǎn)到此拋物線的焦點(diǎn)的距離為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com