【題目】如圖所示,正三角形的中線與中位線相交于點(diǎn),已知是繞旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列四個命題,其中正確的命題的序號是( )
A.動點(diǎn)在平面上的射影在上
B.恒有平面平面
C.三棱錐的體積有最大值
D.直線與不可能垂直
【答案】ABC
【解析】
證明出平面平面,利用面面垂直的性質(zhì)定理可判斷A選項(xiàng)的正誤;利用面面垂直的判定定理可判斷B選項(xiàng)的正誤;由三棱錐的體積公式可判斷C選項(xiàng)的正誤;利用異面直線所成角的概念可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.
對于A選項(xiàng),在正中,為的中點(diǎn),則,
、分別為、的中點(diǎn),,則,
翻折后,對應(yīng)地有,,,平面,
平面,平面平面,且平面平面,
由面面垂直的性質(zhì)定理可知,動點(diǎn)在平面上的射影在上,A選項(xiàng)正確;
對于B選項(xiàng),由A選項(xiàng)可知,平面平面,B選項(xiàng)正確;
對于C選項(xiàng),由于的面積為定值,當(dāng)三棱錐的高取得最大值時,即當(dāng)平面平面時,三棱錐的體積有最大值,C選項(xiàng)正確;
對于D選項(xiàng),在翻折的過程中,有可能為直角,
、分別為、的中點(diǎn),則,即,
所以,異面直線與所成的角為或其補(bǔ)角,則直線與可能垂直,D選項(xiàng)錯誤.
故選:ABC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的年收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的年收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的年收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的年收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為平行四邊形ABCD所在平面外一點(diǎn),M,N分別為AB,PC的中點(diǎn),平面PAD平面PBC=.
(1)求證:BC∥;
(2)MN與平面PAD是否平行?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn),右焦點(diǎn)分別為,右準(zhǔn)線為,
(1)若直線上不存在點(diǎn),使為等腰三角形,求橢圓離心率的取值范圍;
(2)在(1)的條件下,當(dāng)取最大值時,點(diǎn)坐標(biāo)為,設(shè)是橢圓上的三點(diǎn),且,求:以線段的中心為原點(diǎn),過兩點(diǎn)的圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),正項(xiàng)數(shù)列的前項(xiàng)的積為,且,當(dāng)時, 都成立.
(1)若, , ,求數(shù)列的前項(xiàng)和;
(2)若, ,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)部分圖象如圖所示.
(1)求函數(shù)的解析式及的單調(diào)遞增區(qū)間;
(2)把函數(shù)圖象上點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍(縱坐標(biāo)不變),再向左平移個單位,得到函數(shù)的圖象,求關(guān)于x的方程在上所有的實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個極值點(diǎn),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)且斜率為的直線與橢圓有兩個不同的交點(diǎn)和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動的時間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成,,,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學(xué)生評價為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計 | |
男 | 60 | ||
女 | 110 | ||
合計 |
(2)現(xiàn)按照“課外體育達(dá)標(biāo)”與“課外體育不達(dá)標(biāo)”進(jìn)行分層抽樣,抽取8人,再從這8名學(xué)生中隨機(jī)抽取3人參加體育知識問卷調(diào)查,記“課外體育不達(dá)標(biāo)”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.參考公式:
P(K2≥k0) | 0.15 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com