【題目】【2017銀川一中模擬】如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.現(xiàn)以AD為一邊向梯形外作矩形ADEF,然后沿邊AD將矩形ADEF翻折,使平面ADEF與平面ABCD垂直.

(1)求證:BC⊥平面BDE;

(2)若點D到平面BEC的距離為,求三棱錐F-BDE的體積.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】(1)證明:在矩形ADEF中,ED⊥AD,因為平面ADEF⊥平面ABCD,

所以 ED⊥平面ABCD,所以ED⊥BC. 又在直角梯形ABCD中,

AB=AD=1,CD=2,∠BDC=45°,所以BC=,

在△BCD中,BD=BC=,CD=2,

所以BD2+BC2=CD2 所以BC⊥BD,所以BC⊥平面BDE.

(2)由(1)得,平面DBE⊥平面BCE,作DH⊥BE于點H,

則DH⊥平面BCE,所以DH=.在△BDE中,BD·DE=BE·DH,

·DE= (),解得DE=1.所以VF-BDE=VB-EFD××1×1×1=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三條直線l12x-y+a =" 0" (a0),直線l2-4x+2y+1 = 0和直線l3x+y-1= 0,且l1l2的距離是

1)求a的值;

2)能否找到一點P,使得P點同時滿足下列三個條 件:

①P是第一象限的點;

②P 點到l1的距離是P點到l2的距離的;

③P點到l1的距離與P點到l3的距離之比是.若能,求P點坐標;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(1)設函數(shù),求函數(shù)的單調(diào)區(qū)間;

(2)若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ln x-ax(a∈R)(e=2.718 28…是自然對數(shù)的底數(shù)).

(1)判斷f(x)的單調(diào)性;

(2)當f(x)<0在(0,+∞)上恒成立時,求a的取值范圍;

(3)證明:當x∈(0,+∞)時, (1+x) <e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的離心率為,以橢圓的左頂點為圓心作圓,設圓與橢圓交于點與點

1)求橢圓的方程;

2)求的最小值,并求此時圓的方程;

3)設點是橢圓上異于, 的任意一點,且直線分別與軸交于點, 為坐標原點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生研究性學習小組發(fā)現(xiàn),學生上課的注意力指標隨著聽課時間的變化而變化,老師講課開始時,學生的興趣激增;接下來學生的興趣將保持較理想的狀態(tài)一段時間,隨后學生的注意力開始分散.設 表示學生注意力指標,該小組發(fā)現(xiàn) 隨時間 (分鐘)的變化規(guī)律( 越大,表明學生的注意力越集中)如下: ,且

若上課后第 分鐘時的注意力指標為 ,回答下列問題:

(1)求 的值;

(2)上課后第 分鐘時和下課前 分鐘時比較,哪個時間注意力更集中?并請說明理由

(3)在一節(jié)課中,學生的注意力指標至少達到 的時間能保持多長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)在區(qū)間上的單調(diào)性;

(2)若曲線僅在兩個不同的點,處的切線都經(jīng)過點,其中,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.

注: 年份代碼1-7分別對應年份2010-2016.

(1)由折線圖看出,可用線性回歸模型擬合的關系,請用相關系數(shù)加以說明;

(2)建立關于的回歸方程,預測年該企業(yè)污水凈化量;

(3)請用數(shù)據(jù)說明回歸方程預報的效果.

附注: 參考數(shù)據(jù):;

參考公式:相關系數(shù),回歸方程中斜率和截距的最;

二乘法估汁公式分別為

反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,點軸上,點軸上,且,.

(1)當點軸上運動時,求點的軌跡的方程;

(2)設點是軌跡上的動點,點軸上,圓內(nèi)切于,求的面積的最小值.

查看答案和解析>>

同步練習冊答案