17.已知D=$\left\{{\left.{({x,y})}\right|\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≤0\\ 3x-y+6≥0\end{array}\right.}\right\}$,給出下列四個命題:
P1:?(x,y)∈D,x+y+1≥0;
P2:?(x,y)∈D,2x-y+2≤0;
P3:?(x,y)∈D,$\frac{y+1}{x-1}$≤-4;
P4:?(x,y)∈D,x2+y2≤2.
其中真命題的是( 。
A.P1,P2B.P2,P3C.P2,P4D.P3,P4

分析 畫出約束條件不是的可行域,利用目標(biāo)函數(shù)的幾何意義,求出范圍,判斷選項的正誤即可.

解答 解:不等式組$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+2≤0}\\{3x-y+6≥0}\end{array}\right.$的可行域如圖,
p1:A(-2,0)點,-2+0+1=-1,
故?(x,y)∈D,x+y≥0為假命題;   
p2:A(-1,3)點,-2-3+2=-3,
故?(x,y)∈D,2x-y+2≤0為真命題;
p3:C(0,2)點,$\frac{2+1}{0-1}$=-3,
故?(x,y)∈D,$\frac{y+1}{x-1}$≤-4為假命題;      
p4:(-1,1)點,x2+y2=2
故?(x,y)∈D,x2+y2≤2為真命題.
可得選項p2,p4正確.
故選:C.

點評 本題考查線性規(guī)劃的解得應(yīng)用,命題的真假的判斷,正確畫出可行域以及目標(biāo)函數(shù)的幾何意義是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=2|x|,記a=f(log0.53),b=log25,c=f(0),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,C的焦點到其漸近線的距離是$\sqrt{3}$,則雙曲線C的方程為x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.集合P={y|y=-x2+2},Q={x|y=-x+2}則P∩Q是(  )
A.(0,2),(1,1)B.{(0,2),(1,1)}C.D.{y|y≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項和Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;      
(2)求數(shù)列$\{\frac{1}{a_n}-n\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知i是虛數(shù)單位,(1+2i)z1=-1+3i,${z_2}=1+{({1+i})^{10}}$,z1、z2在復(fù)平面上對應(yīng)的點分別為A、B,則|AB|=( 。
A.31B.33C.$\sqrt{31}$D.$\sqrt{33}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:存在向量$\overrightarrow{a}$,$\overrightarrow$,使得$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|,命題q:對任意的向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$.則下列判斷正確的是( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∨(¬q)是假命題D.命題p∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+ax2
(1)記m(x)=f′(x),若m′(1)=3,求實數(shù)a的值;
(2)已知函數(shù)g(x)=f(x)-ax2+ax,若g(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖及其尺寸如圖所示,則該幾何體的體積為( 。
A.$\frac{28}{3}$B.$\frac{{28\sqrt{2}}}{3}$C.28D.$22+6\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案