8.若P是以F1,F(xiàn)2為焦點的橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一點,則三角形PF1F2的周長等于18.

分析 由橢圓的標(biāo)準(zhǔn)方程求得長軸長2a=10,焦距2c=8,根據(jù)三角形的周長公式:|PF1|+|PF2|+|F1F2|=2a+2c=18.

解答 解:由橢圓的方程可知:a=5,b=3,c=$\sqrt{{a}^{2}-^{2}}$=4,
∴長軸長2a=10,焦距2c=8,
三角形PF1F2的周長為:|PF1|+|PF2|+|F1F2|=2a+2c=10+8=18,
故答案為:18.

點評 本題考查了橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.?dāng)?shù)列{an}各項均為正數(shù),且對任意n∈N*,滿足an+1=an+ca${\;}_{n}^{2}$(c>0為常數(shù)).
(1)求證:對任意正數(shù)M,存在N∈N*,當(dāng)n>N時有an>M;
(2)設(shè)bn=$\frac{1}{1+c{a}_{n}}$,Sn是{bn}前n項和,求證:對任意d>0,存在N∈N*,當(dāng)n>N時有0<|Sn-$\frac{1}{c{a}_{1}}$|<d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在(0,+∞)上的函數(shù),且對任意正數(shù)x,y都滿足f(x+y)=f(x)f(y),且當(dāng)x>1時,f(x)>2,f(2)=4.則f(x2)>2f(x+1)的解為{x|x>2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2|$\overrightarrow$|=2,|$\overrightarrow{a}$-4$\overrightarrow$|=2$\sqrt{7}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.命題“?x>0,x2+x-2>0”的否定是?x>0,x2+x-2≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z滿足(z+2i)(3+i)=7-i,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.因發(fā)生交通事故,一輛貨車上的某種液體潰漏到一池塘中,為了治污,根據(jù)環(huán)保部門的建議,現(xiàn)決定在池塘中投放一種與污染液體發(fā)生化學(xué)反應(yīng)的藥劑,已知每投放a(1≤a≤4,a∈R)個單位的藥劑,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關(guān)系式近似為y=a•f(x),其中f(x)=$\left\{{\begin{array}{l}{\frac{16}{8-x}-1({0≤x≤4})}\\{5-\frac{1}{2}x({4<x≤10})}\end{array}}$.若多次投放,則某一時刻水中的藥劑濃度為各次投放的藥劑在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中藥劑的濃度不低于(克/升)時,它才能起到有效治污的作用.
(1)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(2)若第一次投放2個單位的藥劑,6天后再投放a個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)a>b>c,且a+b+c=0,求證:$\sqrt{^{2}-ac}$<$\sqrt{3}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-x2+x-m
(Ⅰ)求函數(shù)f(x)的極值
(Ⅱ)若函數(shù)f(x)<2x-x2-(x-2)ex在x∈(0,3)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案